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Abstract  

Since the use of cold-rolled steel sections is a standard method in mechanical engineering and steelwork and 
cost efficiency is always a big issue, it is of great interest to address the highly non convex problem of cross-
section optimisation. At a first glance classic genetic algorithms already seem to be suitable for this problem, 
because they are powerful search heuristics for solutions in non convex problems. But in addition to the great 
number of local optima, which can occur in the optimisation process, the problem is also constrained due to 
constructive needs and limitations in manufacturing. Constraints highly affect the ability of genetic algorithms 
to overcome local optima, especially under high selection pressure. This high selection pressure comes from 
the need to suit the given use case in terms of physical stability. Therefore we had to handle the restrictions 
more flexible, so that the algorithm can temporarily violate our stability criteria to overcome a local optimum, 
but will end up with a solution within our given boundaries. To achieve this we negatively coupled the penalty 
factor for stability criteria violations to the mutation strength, thus allowing adaptive radiation with rather free-
wheeling restriction handling, followed by a rigid selection process approaching the optimal solution. 
Additionally we introduced an inbreed avoiding recombination system to speed-up the exploration of the fitness 
landscape. This yielded material savings of about 20 %. To speed up the method, parallelisation was applied 
and the algorithm could be implemented on a 60-core Linux cluster. 
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1. INTRODUCTION  

In modern mechanical engineering and steelwork the use of cold-rolled (roll-formed) steel sections is a 
standard method [1]. These sections should be mechanically stable on the one hand and cost efficient on the 
other hand. To decide what profile suits for a certain case is a constrained optimisation problem which is in 
general non convex, i.e. several local optima exist. It is a problem of restricted optimisation as such a profile 
has to meet several requirements with respect to the mechanical load. Parameters like moments of inertia, 
moments of resistance, torque of inertia, buckling-stability, slenderness ratio and the radii of inertia have to be 
in a range suitable for the material to withstand the loads. These mechanical constrains are typically handled 
using Lagrange-multiplyers, penalty-functions, barrier-functions, combinations of the former or methods 
eliminating the degrees of freedom [2, 3]. Finding the global optimum for such a problem is a hard task in 
general and there is no method that guarantees success. Besides great deluge algorithm, simulated annealing, 
Metropolis algorithm, threshold acceptance, hill climbing, ant algorithm, stochastic tunnelling and RANSAC-
algorithm the most promising and wide used approach is that of the genetic algorithm or evolutionary algorithm. 
A genetic algorithm is a search heuristic that mimics the process of natural evolution [4-7]. This heuristics can 
be used to generate useful solutions to optimisation and search problems. In a genetic algorithm, a population 
of individuals (candidate solutions) is evolved toward better solutions with respect to a fitness function. Not 
surprisingly there were several attempts in the past to optimise cold formed steel profiles using genetic 
algorithms [8-13]. However it turned out to be rather complicated to optimise the general cross section but still 
overcome local optima. We recently established a genetic algorithm for this problem which uses some special 
adaptations in order to solve this special problem of free form optimisation [14]. We found that variable 
selection pressure implemented by the rule of 1/5 [6] is absolutely necessary. Highly advantageous is sexual 
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recombination including an inbreed avoiding mate selection based on the genetic distance. We found a flexible 
handling of the mechanical restrictions, coupled to the mutation strength to be vital for overcoming local optima. 
It is well established, that separation of subpopulations of a species can lead to divergent evolution and 
therefore to the development of new species. In the case of genetic algorithms, this approach is also possible 
and improves the search in the parameter space. Here we show how our genetic algorithm can be parallelised 
for the implementation of subpopulations and therefore divergent evolution. The run time is reduced 
significantly when compared to the simple sequential calculation on a single high speed core.   

2. METHODS 

2.1. Basic algorithm 

The general algorithm was described recently [14]. Briefly, a profile having a finite number of local bends is 
described by a vector g of the x- and y- coordinates of all these bends 

        (1) 

with x representing the vector of all x-coordinates and y being the vector of all y-coordinates of the bends 1.n. 
Between the bends the tin is flat. For the reproduction an individual is selected and a copy of the genome is 
taken and subjected to mutation (see below) for the next generation. In the case of sexual recombination, the 
genomes of two individuals are combined (for details see [14]). The mutation of an individual i, i.e. a profile 
represented by gi can be constructed by adding a vector of normal distributed values of the corresponding size 
to gi as 

  (2) 

so the 2n values of Ni are normal distributed random numbers with mean 0 and standard deviation 1. The 
values si which can be 0 or 1 represent the protection of the end coordinates; if for example the x-coordinate 
of a bend j must not be changed due to constructive demands, sj is 0. The value µ is the mutation strength 
which was found to be a rather critical parameter. The mutation strength µ must be adapted continuously 
during the application of the algorithm. Therefore we applied the 1/5-method established by Rechenberg [6]. 
If the number of individuals in the generation t+1 that have higher fitness than their parents is significantly 
higher than 1/5th of the total number of individuals in this generation, the mutation rate is increased by a factor 
of 10. If on the other hand the better individuals are below 1/5th of the total number, the mutation strength is 
reduced by a factor of 3. These values were empirically obtained to yield good results. The fitness can be 
initially calculated as 1 / A where A is the cross section area of the profile, if the weight has to be minimised. 
To assure mechanical stability calculations for beams on two supports according to the DIN EN 1993 
(Eurocode 3) were established. For given restrictions concerning deformations and carrying capacity, 
parameters of the profile like moments of inertia, the moments of resistance, torque of inertia, buckling-stability, 
slenderness ratio and radii of inertia were calculated for each profile under consideration. Dependent on the 
state of the evolutionary optimisation, i.e. on the mutation strength µ, violations of the stability criteria are 
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allowed. For example with respect to the area moment of inertia around the x-axis Ix is calculated and 
compared to the minimal area moment of inertia Ix,min. Then a weighting factor hIX is calculated according to 

         (3) 

with V being a steepness factor. A value of V equal one over ten times the number of variable entries in the 
genome was found empirically to be well suited. However, this factor might need individual adaptation by the 
operator to yield good results. Based on the different factors hi representing the different mechanical 
constraints the actual fitness function can be calculated as 

            (4) 

Finally the selection was done randomly based on selection probabilities [14]. For the implementation of 
separated subpopulations the algorithm is started several times with initial conditions which are identical 
besides the seed setting of the random number generator. Typically 30 independent subpopulations were 
used. 

2.2. Implementation on a 60-core Linux cluster 

The algorithm was ported to a standard beowulf-type cluster with 60 CPU cores, to explore the benefits of 
massive parallelisation for this specific application. The cluster is composed of 14 IBM bladeservers (HS20) 
with 2 dualcore Intel Xeon CPUs and 4GB of DDR2 memory each as worker-nodes and one IBM XServer 
3650 with 2 Intel Xeon dualcore CPUs of a more recent generation and also 4GB of DDR2-RAM as the 
headnode. The Layout of the cluster environment is rather traditional. The headnode has 2 network interfaces, 
one connected to the university intranet and one connected to the worker-nodes. The gigabit switch module 
of the bladecenter is used to interconnect the worker-nodes and the headnode in a private network 
environment. All nodes are running Ubuntu Server 14.04LTS and use OpenMPI for parallel-process-
communication. Octave version 3.8.1 with the package 'mpi' was used as the runtime environment for the 
algorithm. A shared network filesystem is provided by the headnode, so that every worker-node can get the 
algorithm and the data-files directly from the HDD of the headnode. The headnode also provides a network-
wide user authentication system and network time synchronisation, so that everything is consistent between 
the individual machines. Four versions of the algorithm were run: Parallel processing with forced symmetry of 
the profiles (mirrored on the Y-axis at X = 0), parallel processing without forced symmetry and sequential 
processing with and without forced symmetry. For the parallel processing 30 CPU-cores were used to run the 
optimization for one population each. At the end of the evolution process the best individual out of those 30 
populations was picked. The sequential calculations were done on one CPU-core repeating the optimization 
process 30 times and then picking the best result out of those thirty runs. Computation times were saved to 
the results file to calculate the speed-up, which parallelisation actually yields. 

3. RESULTS AND DISCUSSION 

The efficiency of the algorithm, especially of our flexible penalty which tolerates violations of the restricting 
conditions dependent on the mutation strength was exemplified recently [14]. It can be also shown here when 
optimising a profile for a rail of a crane (Figure 1A and B). The profile has to fulfil the following conditions: The 
area moments of inertia have to be above Iymin = 300 cm4 and Izmin = 360 cm4; the section modulus of torsion 
has to be above Itmin = 0.1 cm³; the section moduli have to be above Wzmin = 35 cm³ and Wymin = 35 cm³ 
respectively. The radii of inertia are demanded to be above rtymin = 25 cm and rtzmin = 25 cm in order to avoid 
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Euler-bending and buckling. Geometric restrictions were also given: For bolting the rail and for connection with 
a beam hoist the sections marked in Figure 1A with ellipses have to be protected, i.e. their positions must not 
be altered. If this profile, determined by its centre line (Figure 1B), is then subjected to an evolution algorithm 

with the strict penalty function which does not allow any violation of the above condition, the optimisation stops 
at a hardly improved profile. Especially the two folds on the upper sides persist, as any change of the tip 
coordinates will either increase the cross section area A, i.e. reduce the fitness or violate the mechanical 

restrictions. The advantages of the adaptive penalty functions were shown in detail in [14]. Two principally 
different results are shown here. In Figure 1C, no further restriction was made and a profile fulfilling all 

geometrical and mechanical restrictions was found which reduces the cross section area and thereby the 
weight by 21 % then related to the result. If additionally a symmetric profile is demanded, the profile depicted 
in Figure 1D can be found. The weight reduction is 18 %. Although this weight reduction is significantly smaller 

than in the asymmetric case, a symmetric profile might be more desirable than an asymmetric one. Generally 
it can be said, that restrictions of any mechanical or geometrical kind can be easily implemented in the way 
described here.  

 

Figure 1 Optimisation example of the profile for a rail of a crane. A) Original profile where the protected 
areas are indicated by ellipses. Here connection parts have to be attached. B) Centre line of original profile 
showing the positions of the bends. C) Centre line of the optimised profile. D) Centre line of the optimised 

profile forcing symmetry. The cross section areas are indicated for a wall thickens of 1.75 mm. 

The computation times on the cluster are shown in Table 1. These times were all measured on compute nodes. 
The parallelisation speed-up is 16.8 for symmetric and 13.3 for asymmetric profiles. We also carried out a run 
with the sequential algorithm on the headnode which took 16 minutes for symmetric and 25 minutes for 
asymmetric profiles. This reduction of computation times is due to better system performance (faster CPU) 
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and reduced overhead (no network file system). Since the servers of which our cluster is composed are rather 
old we also tested the performance of the sequential computations on a standard office computer (intel core 
i5.8 GB of DDR3-RAM, SATA3 SSD) and got the calculations for symmetric and asymmetric profiles done 
within 17 minutes in total. This shows that calculation times can be extremely reduced through parallelisation 
and modern hardware. Thus we can expect a speed-up of at least factor ten so on a convenience cluster 
formed by modern office PCs with 30 cores in total the parallel computations would be done in less than two 
minutes. Previous work with a parallel computation on a 6-core office computer [14] has already shown, that 
these expectations are realistic. Thinking of more complicated load cases or calculations for a whole structure, 
rather than a single beam, the speed-up of massive parallelisation may become even more significant, as the 
ratio between overhead and actual calculation times improves for larger problems [15]. 

Table 1 Computation times on the cluster 

- Asymmetric Symmetric 

Parallel 3.9 min 2.2 min 

Sequential 52 min 37 min 

4. CONCLUSION 

We were able to implement an optimisation algorithm to the highly non-convex problem of cross section 
optimisation of steel beams based on evolutionary algorithms. A new adjustable penalty function to calculate 
the fitness was established. This new function is superior to the standard penalty function as escapes from 
local optima are made possible. For a more complete search of the parameter space isolation of several 
subpopulations was implemented. This can be parallelised easily on a computer cluster. Taken together we 
found a biomimetic approach to optimise cold-rolled steel beam profiles in order to exploit the material almost 
ideal for obtaining cost efficient and producible sections which can bear the specified mechanical load. 
Different restrictions can be implemented easily, thus for example the results of finite element (FEM) 
simulations can be used as constraints. The values from the FEM can be compared to the allowed values and 
the weighting factors hi for the calculation of the corrected fitness function can be obtained. Due to the simple 
way to parallelise the algorithm, this can be done with reasonable calculation times. Thus, the algorithm 
described could help saving resources and energy as well as costs in mechanical engineering and structural 
steel work in the future.  
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