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Abstract   

The work concerns an idea of the expert system for predicting the life of forging tools used in die forging 
processes, for which the knowledge representation and processing were based on Adaptive Neuro-Fuzzy 
Inference System (ANFIS). Using the results of extensive investigations and analysis, a knowledge base was 
developed for the three representative industrial hot forging processes (forging of front wheel, casing of 
constant velocity joint body, and fastener construction). The knowledge base contains elements of both 
theoretical knowledge about destructive phenomena and empirical knowledge gained from the experience of 
the authors and industry experts (forge employees) and also from the acquired values of selected forging 
parameters. The parameters, including the number of forgings, the billet and tool temperature, tool loading, 
contact time, path of friction and lubrication, were compiled in the form of knowledge vectors in respective 
tables. The task of the developed system is to quantify the amount of wear, which is a geometric loss suffered 
by the die cavity during successive operations of the industrial hot forging process, after entering some 
technological parameters as inputs for this process. It is an original approach, as, so far, the thematic literature 
has not provided any examples of the use of ANFIS to solve the problem faced by the system. Differences 
between the results obtained from the ANFIS- based system and empirical data derived from the study of worn 
tools are in the range of 0-10 %. 
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1. INTRODUCTION  

Forging tools used in the process of die forging, hot or semi-hot, are operating under extra hard, extreme even, 
conditions of cyclic mechanical loads (of up to 1000 MP) and thermal loads (from 60 °C up to 800 °C at the 
surface). Hence they are exposed to many, often mutually destructive, factors that cause their premature wear 
and, despite the significant technical progress, forging tools (dies and punches) are still characterized by 
relatively low durability. The life of tools is a complex issue, and the wear of forging equipment significantly 
reduces the quality of manufactured forgings, while increasing the production costs. The most common defects 
which occur in forgings, caused by the wear of tools, are related with improper and incomplete filling of the die 
cavity, resulting in unfilled sections, cold shuts, barbs, die shifts, scratches, delaminations, micro and macro 
cracks, etc. This, in turn, affects the functionality of final product made from the forging, which has a significant 
impact on production costs and lower quality of forgings. Currently, it is estimated that the cost of tooling can 
account for up to 8-15 % of the total production costs. In fact, taking into account the time needed to replace 
the used instrumentation and cases of unexpected destruction of tools, these costs may rise up to even 30 %. 

From the point of view of the production process, durability in the technical literature usually means the number 
of produced forgings that meet quality requirements and have been manufactured using one tool. By contrast, 
from the scientific point of view, the tool life is linked to its resistance to the effect of damaging agents acting 
on this tool during its operation. In this case, very important is an objective assessment and analysis of the 
destructive mechanisms that cause wear or damage to the tool, and not as in the case of the definition used 
in production, the subjective assessment of the operator. 
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The life of tools depends mainly on the conditions under which the forging process is run, on the design and 
construction of tools, and further on the suitable heat treatment of these tools adequate to the selected tool 
material, the shape of the preform and the slug, and other similar factors. At present there are no clear criteria 
applicable in the evaluation or selection of methods to improve the life of tools [1-3]. What is known are only 
general guidelines, and therefore every industrial process of forging must be analyzed separately, because 
process parameters resulting from the technology, or tribological relationships between the shaped material 
and the tool, or many other factors, are closely related to a specific process. Therefore, various methods are 
being developed that are designed to analyze the wear and tear of forging tools and forecast their durability, 
which is justified by considerations of both financial and scientific character. Currently, numerous and different 
IT methods and tools are available to allow for partial replacement of costly and time-consuming physical 
experiments with virtual experiments. In addition to numerical modelling methods, increasingly important role 
in the industry start playing the expert systems, used primarily as advisory systems for the tasks of 
identification, classification, control, simulation and diagnostics [4-6]. Efforts are also made to use expert 
systems in optimization of the tools used in forging operations [7-9].  

The development of computer science that allows the prediction of tool life depending on the parameters of 
the forging process is deliberate and economically viable. This will allow in the future further optimization of 
process parameters, owing to which, with the technology parameters kept at an appropriate level, the "life" of 
forging instruments will be prolonged to maximum. 

The aim of this study was to develop a system, whose task is to predict the durability of forging tools depending 
on the process parameters and using three representative processes of die forging. The purpose of the system 
is to predict tool wear, understood as a geometric loss or gain of material, based on the selected process 
parameters, i.e. the number of forgings, pressure, path of friction, deformation time and process temperature. 
Knowledge representation and processing was based on adaptive neuro-fuzzy inference system (ANFIS). 

2. DATA TO THE SYSTEM 

The source data that are used in the developed system come from the experiments carried out under industrial 
conditions. They concern three representative processes that cover a vast majority of the conventional die 
forging variations (hot and semi-hot) carried out under industrial conditions. In these processes, different 
conditions occur that determine the durability of forging tools. The authors‘ experience suggests that strong 
differentiation of forging conditions (due to temperature, pressure, path of friction, thermo-chemical properties, 
tribological behaviour, etc.) can be obtained by selecting: 

a) hot forging of front wheel in open dies - die inserts heated to 250 °C, and cooled and nitrided only in 2 
or 3 operations, initial billet heated inductively to 1150 °C, 

b) precision forging of CVJB casing in closed dies - tools not preheated, lubricated and cooled, initial billet 
heated inductively to 920 °C, 

c) forging of fastener to move concrete slabs in closed die without lubrication and cooling of tools, billet 
heated inductively (locally) to 1000 °C. 

The selected representative processes cover a vast majority of standard processes of die forging (hot and 
semi-hot), which are carried out under industrial conditions. Relevant information has been described in detail 
in the aforementioned article [10].  

Some of the parameters, such as temperature of the billet, temperature of tools, shaping force, tribological 
conditions, the geometry of the preform and of the final product, are based on process sheets and outcome of 
numerous studies conducted by the authors. Other parameters, such as pressure, path of friction, contact 
temperature, were determined using numerical modelling verified by a measuring and monitoring system [11]. 
The geometric loss (wear) of die cavities was determined from a comparison of superimposed images obtained 
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by laser scanning of new and worn out tools (after making a fixed number of forgings) [12]. As a result of 
conducted simulations and testing of materials, a database including 450 knowledge records was developed. 
Each record contains information about the rate of wear in a specific area of the tool and fixed values of the 
parameters of the forging process. A detailed description of the experiment, of the tests performed and of the 
process of data acquisition is included in an earlier publication of the authors [10]. 

3. ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM (ANFIS) 

Seeking suitable forms of knowledge representation for a computer system that is expected to operate based 
on the collected experimental data, it was decided to use fuzzy logic. A decisive impact on this choice had the 
nature of the data obtained, which are the results of measurements and observations and the results of 
computer simulations. This information represents only some specific cases, and hence it is the information 
incomplete and burdened by errors of measurement and simulation, which altogether means the data that, is 
uncertain. Fuzzy logic is applicable also to the processing of such materials. The first attempt made by the 
authors to develop an expert system using fuzzy logic was presented in [10]. An expert system applying 
Mamdani model [13, 14], where the linguistic rules and expressions of the strategy of inference are based on 
expert knowledge, was developed. The developed system, using fuzzy knowledge base, is operating with an 
error of 10%, but the data collected was insufficient to cover fully all the analyzed areas. In some cases, the 
system generated an answer about the lack of rules, based on which the decisions were to be made. 

Seeking forms of knowledge representation which, based on the developed experimental data, would build a 
model characterized by a smaller error and covering all the areas analyzed, it was decided to use, known in 
the literature, adaptive neuro-fuzzy inference system (ANFIS) [15, 16]. Neuro-fuzzy systems (NFS) are 
systems combining the properties of neural networks that have the ability to learn and adapt to certain 
conditions and fuzzy systems that have the ability to describe and process quality knowledge incomplete and 
uncertain. Under this model, fuzzy inference systems (FIS) provide a scheme of inference and ease of 
interpretation of the model, while the determination of the optimal structure of the model, i.e. the interpretation 
of appropriate fuzzy sets, shapes of membership functions and fuzzy rules, is implemented by training methods 
used in artificial neural networks (ANN), based on the supplied training data. These methods have the ability 
to adapt to the structure of the data presented and will choose model parameters effective in minimization of 
the error of inference [17]. 

3.1. System model  

To develop a model of the system, as training data was 
used an experimental summary of the results of 
measurements where the influence of certain 
parameters of the forging process on tool wear 
(geometric loss) was measured. Some data, such as 
the number of forgings, pressure, path of friction, 
deformation time and process temperature, have been 
treated in the system as explanatory (input) variables, 
while the dependent (output) variable was the wear of 
tools expressed as a geometric loss. To develop a 
model of the system, an implementation of the ANFIS 
structure from the Fuzzy Logic Toolbox package of Matlab was used [18]. The structure of the fuzzy model 
variables is shown in Figure 1. The adaptive neuro - fuzzy inference system (ANFIS) used in this study is an 
algorithm that, based on the training data, can automatically adjust the parameters of the fuzzy inference 
system (FIS) of Sugeno type. The parameters of membership functions are adjusted with backpropagation 
learning algorithm or combined with the method of least squares (hybrid learning method). When constructing 

Figure 1 The structure of fuzzy model 
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a model, the data space was first divided into the corresponding subspaces. The input to the system was 
provided by 5 input variables, each of which was divided into three fuzzy sets with Gaussian membership 
function. This corresponds to the formation of 243 subspaces, each of which is represented by a single fuzzy 
rule describing operation of the system in this sub-area (1) 

�Lñ Ý�Nò��N3¼Np�L ónÍº ônÍºN���N3¼Np�L N	^´õ`�a 
 öL N)       (1) 

where: � 
 ���ô��	 is the input variable of the system, p÷
L are fuzzy sets, a ø � is the output variable of the 

system. Example of rule (2) generated by the system is given below.  

IF(number-of-forgings is in1mf1) and (temperature-[C] is in2mf1) and   

(deformation-time-[s] is in3mf1) and (pressure-[MPa] is in4mf1) and      (2) 
(path-of-friction is in5mf1) THEN (wear-[mm] is out1mf1)  

Initial parameters of the system, i.e. parameters of the membership function for fuzzy sets occurring in 
predecessor rules, are determined at random. Then they are “tuned” using two methods: the method of 
gradient steepest descent and a combination of the steepest descent method with the least squares  
method [14]. 

These methods have the ability to adapt to the structure of the presented training data and allow choosing 
model parameters minimizing the error of inference. Figure 2 shows representations of selected linguistic 
variables in the form of fuzzy sets after fine tuning of the system. 

 
a) number of forgings 

 
c) deformation time 

 
b) temperature 

 
d) pressure 

Figure 2 Membership function plot for inputs 

The neuro - fuzzy ANFIS system can be presented in the form of network architecture (Figure 3), which 
resembles a multi-layer perceptron, where the role of weights perform functions of membership in fuzzy sets; 
instead of the activation function are used operators implemented on fuzzy sets. 
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Figure 3 ANFIS model structure 

In the first two layers (L1 and L2) are calculated the degrees of veracity of predecessors of logical rules. This 
operation is carried out in the same way as in the case of fuzzy inference systems (FIS). In the next layer (L3) 
are calculated the values of output functions, which then (L4) are weighted by the degrees of veracity of logical 
rules and summed up. At the output is obtained aggregate value of the dependent variable (output) for the 
modelled sample. Learning of NFS is iterative and involves matching parameters of membership functions 
(e.g. the width and position of the Gaussian function) to best predict the value of the dependent variable for 
the test sample. The established structure of inference of fuzzy-neural network model, consisting of 5 input 
variables divided into three fuzzy sets and 243 rules, is shown in Figure 4. 

The, developed with the use of ANFIS algorithm, FIS system operates with a testing error set at a level of 
hermos. 12 %; training was carried out in 7 epochs. The model developed in this article operates within the 
whole range of input variables. The results in the form of 3D submodels that take into account the impact of 
selected input variables on material wear are presented under Section 3.2. 

 
Figure 4 ANFIS model structure to predict the  

wear of forging tools 

 

Figure 5 Change in training error for subsequent 
epochs 

3.2. Discussion of results 

Based on the obtained results it can be concluded (Figure 6a) that with the increase in the number of forgings 
and simultaneous increase in temperature of the billet, the loss of tool material increases, and the temperature 
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rise considerably intensifies this process. This is due to thermal fatigue and local tempering of the tool material, 
which facilitates breaking off of larger particles caused by the flow of forged material suffering deformation. In 
the case shown in Figure 6b, it can be said that with the increasing number of forgings, the loss of the tool 
material also increases. Greater loss of material observed for the large number of forgings and the increasing 
hardness value can be explained by the fact that with the increasing number of forged components, the hard 
particles of hermos layers start breaking off, which accelerates the tool wear. The large number of forgings 
and the low value of plastic deformation of the tool material (Figure 6c) produce a high rate of wear, but with 
the increase of plastic deformation, the material loss is hampered. Plastic deformation is mainly responsible 
for changes in the tool geometry, but does not result in material loss. This state may be due to the fact that 
other degradation mechanisms take over the leading role. A similar situation is observed in Figure 6f, where 
the temperature rise with low contribution of plastic deformation (change in the shape of the tool but without 
any loss of material) increases the loss of material, which is partly the effect of 383 hermos-mechanical fatigue 
intensifying the abrasive wear. 

 a)  b)  c) 

 d)  e)  f) 

 g)  h)  i) 

Figure 6 Presentation of the results in the form of 3D submodels that take into account the impact of 
selected input variables on material wear 

The obtained model results (Figure 6d) indicate that with the increasing number of forgings and longer path 
of friction due to an intense flow of the forged material, a large material loss is suffered. Especially, when the 
number of forgings is at a level of 25,000 pieces and the path of friction is long, the material loss can reach 
even 8 mm. A similar trend is observed in Figure 6g, where the increase in the path of friction with increasing 
temperature results in accelerated wear. This situation is sometimes observed in industrial processes of 
forging, e.g. when the tool is in the final stage of operation, and additionally some of its areas shaping the 
forging, in places where piercing is expected, are already maximally worn out. 

The results shown in Figure 6e confirm the relationship observed in the industrial environment, where the 
increase in temperature of the billet reduces the durability of the die, due to tempering of the tool surfaces most 
exposed to heating, which promotes and increases the wear. The longer contact time and the hot deformation 
of material also increase the tool wear (Figure 6h). 
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Detailed examination of the results shown in Figure 6i demonstrates that with an increase in pressure exerted 
on the tool and the short path of friction, the gain of material occurs, not observed in the industrial forging 
processes. On the other hand, longer path of friction and high values of pressure result in great material loss, 
which is confirmed by the results of studies carried out under industrial conditions. However, it should be 
remembered that the developed database (consisting of 450 knowledge records) could not provide for the 
case described in Figure 6i the sufficient number of records (especially for low pressure values), which means 
that the proposed ANFIS algorithm model gave results inconsistent with reality. 

The results of the global analysis of adaptive inference system (ANFIS) in the context of forecasting the 
durability of forging tools from the point of view of an expert in the subject indicate the overall accuracy and 
validity of the adopted model (solution). It can be assumed that with the knowledge base expanded with further 
records, the correctness of the results will be even better. 

4. SUMMARY AND CONCLUSIONS 

Studies conducted by the authors concerning the analysis of the destructive mechanisms and methods to 
increase tool life confirm the high compatibility of the obtained theoretical results (based on the proposed 
adaptive neuro-fuzzy inference system (ANFIS)) with the technological practice. Only the results relating to 
the effect of pressure in the developed model are somewhat puzzling, since for high values of the pressure 
and a short path of friction, a weight gain in the tool material was observed, and not, as in the case of industrial 
forging processes, the loss of material according to a model of abrasive wear developed by Archard, where 
the loss is proportional, among others, to the pressure. For the long path of friction, the results are already 
compatible with reality.  

The value of error with which the model is burdened is slightly higher than the value of error assumed for the 
first version of the system described in [10], but model developed in this article is valid for all the analyzed 
areas.  
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