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Abstract 

Use of the control-steering systems in blast furnace technology contributes to the improvement of the quality 
of hot metal, which can be expressed by desirable and stable chemical composition and required temperature 
of hot metal at the tap. The paper presents the possibility of using artificial neural network as part of BF 
technology supporting system, and in particular its use to predict silicon, sulfur and phosphorus containing in 
hot metal. The models of neural networks have been created on the industrial operation basis of blast furnace 
No. 5 Arcelor Mittal Poland Krakow. 
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1. INTRODUCTION  

Increasing demands on the hot metal quality and minimizing of the costs associated with the blast furnace 
process are forcing engineers to develop new solutions [1-3]. Introduction of new measuring devices and using 
of mathematical models greatly simplifies the control of the process. Whereas introducing of the digital 
monitoring expanded control capabilities of the blast furnace process through direct presentation of data. 
However, operation and control of blast furnace is still a challenge because of the difficulty of making some 
measurements, especially at the high temperature parts like hearth and bosh. Desire to the new solutions of 
improving and stabilizing the blast furnace process has led to the introduction of a new science technology 
which is artificial intelligence [4-6]. Application of neural networks at prediction with little advance of the 
abnormal conditions in blast furnace has made a new opportunities and consequently the considerable stir at 
modeling of such a difficult process [7-9].  

The present paper shows an examples of using artificial intelligence at prediction of hot metal composition, 
particularly silicon, sulfur and phosphorus containing at the next tap. Obtained results were compared with real 
parameters of hot metal and also with calculations performed by linear regression method. The compared 
differences between methods are graphically presented. 

2. CHARACTERISTIC OF THE BEST NEURAL NETWORKS CHOSEN FOR ANALYSIS OF HOT 

METAL QUALITY 

During the research and observations in Arcelor Mittal - Krakow Branch, collected an enormous amount of 
data sets, which consisted of parameters classified as having an influence on the content of silicon, sulfur and 
phosphorus in hot metal. Table 1 shows characteristics of the best selected networks for prediction of silicon, 
sulfur and phosphorus in hot metal respectively 

For silicon containing in hot metal prediction was chosen network of type MLP (Multi-Layered Perceptron) with 
using of 11 input data. The network with minimal error possessed 8 neurons in first hidden layer and 5 neurons 
in second hidden layer. The quality of ANN was 0.598.  

For sulfur prediction the nest network was also ANN of type MLP with using of 11 input data. Minimal error 
was obtained for 23 neurons in first layer and 1 in second one. The quality of ANN was 0.574. 

However, for phosphorus prediction the best ANN was of type RBF (Radial Basic Functions) with using of 9 
input data and 12 neurons at first layer only. 
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Table 1 Characteristics of the best selected neural networks used for prediction containing of Si, S and P 

Element 
Type 

of ANN 
Number of data 

input 

Number of neurons 
in the first hidden 

layer 

Number of neurons 
in the second hidden 

layer 

Average 
ANN error 

Quality of 
ANN 

Silicon MLP 11 8 5 0.123 0.598 

Sulfur MLP 11 23 1 0.005 0.574 

Phosphorus RBF 9 12 - 0.002 0.385 

The values of the ANN quality parameters may raise objections, if compare them to the results obtained for 
the network describing other processes [1]. But it should be noted, that blast furnace due to the nature of work, 
size, and difficulty of measuring conditions is a challenge for mathematical modeling. To clarify the view on the 
practical value of obtained networks it should be analyzed their histogram, showed in Table 2.  

Thus, for silicon prediction an acceptable range of errors should be at least 0-0.1. An accuracy of Si prediction 
is about 70 %, so it should be admitted that this result is not high. For instance the ANN developed in Lulea 
Steelworks was obtained result about 85 % at range of error 0-0.05 [7]. This fact can be explained by absence 
of averaging storage of raw materials in Krakow Steelworks, which surely badly influences on inaccuracy of 
SiO2 containing probes [10]. However, prediction results of sulfur and phosphorus containing in hot metal are 
much rewarding. 

Table 2 Dependence of prediction accuracy on range of elements containing errors 

 
Range of silicon content errors 

0 - 0.05 0 - 0.1 0 - 0.15 0 - 0.2 0 - 0.25 0 - 0.3 0 - 0.35 

Accuracy of Si 
predictions  

45.8 % 69.8 % 84.3 % 93.2 % 99 % 100 % - 

 
Range of sulfur content errors 

0 -0.004 0 - 0.01 0- 0.014 0 - 0.02 0 - 0.024 

Accuracy of S 
predictions 

56.6 % 92.2 % 98.8 % 99.6 % 100 % 

 
Range of phosphorus content errors 

0-0.002 0-0.004 0-0.006 0-0.008 0-0.01 0-0.011 

Accuracy of P 
predictions 

76.3 % 89.6 % 96.7 % 99.6 % 99.6 % 100 % 

3. AN EFFECTIVENESS COMPARISON OF OBTAINED NETWORKS WITH REGRESSION METHOD 

In order to compare the performance of artificial neural network model it has been compared with linear 
regression method. Regression relationship was obtained basing on the same input variable data as for ANN. 
Figure 1 shows the comparison. 

Si=(a1·W1)+(b1·W2)+(c1·W3)+(d1·W4)+(e1·W5)+(f1·W6)+(g1·W7)+(h1·W8)+(i1·W9)+(j1·W10)+(k1·W11)+w (1) 

where: 
Si - predicted silicon containing,%, 

W1 - hot blast volume m3/h        a1 = 7.311 

W2 - hot blast moisture, g/m3        b1 = 0.003 
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W3 - hot blast temperature, 0C        c1 = 0.0003 

W4 - Si containing in HM at previous tap, %      d1 = 0.698 

W5 - SiO2 containing in top dust, %        e1 = 14.173 

W6 - C containing in top dust, %        f1= -3.404 

W7 - share of pellets, %         g1 = 0.015 

W8 - Ore/Coke          h1 = -0.004 

W9 - slag mass, kg/tHM         i1 = -0.000031 

W10 - slag basicity, -          j1 = 0.199 

W11 - burden basicity, -          k1 = 0.018 

           w = -1.7 

 

Figure 1 Comparison of silicon prediction by different models with real measurement 

For sulfur prediction was obtained equation (2) and comparison of methods shows Figure 2. 

S=(a2·V1)+(b2·V2)+(c2·V3)+(d2·V4)+(e2·V5)+(f2·V6)+(g2·V7)+(h2·V8)+(i2·V9)+(j2·V10)+(k2·V11)+v  (2) 

where: 

S - predicted sulfur containing, % 

V1 - burden bacicity, -         a2 = -5.4·10-5 

V2 - slag bacicity, -         b2 = - 0.05387 

V3 - hot blast temperature, 0C        c2 = -8.1·10-6 

V4- hot blast moisture, g/m3        d2 = -0.00016 

V5 - hot blast volume, m3/h        e2 = 5.41·10-8 

V6 - Ore/Coke,-          f2 = -0.00131 
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V7 - slag mass, kg/tHM         g2 = 0.000216 

V8 - S containing in top dust, %        h2 = 0.641174 

V9 - S containing in slag, %        i2 = -0.01148 

V10 - S containing in HM at previous tap, %      j2 = 0.452605 

V11 - S input with the burden, kg/tHM       k2 = -0.0131 

           v = -0.13 

 

Figure 2 Comparison of sulfur prediction by different models with real measurement 

For phosphorus prediction was obtained equation (3) and comparison of methods shows Figure 3. 

P=(a3·Y1)+(b3·Y2)+(c3·Y3)+(d3·Y4)+(e3·Y5)+(f3·Y6)+(g3·Y7)+(h3·Y8)+(i3·Y9)+y    (3) 

P- - predicted phosphorus containing, % 

Y1 - burden basicity, -          a3 = -0.003700066 

Y2 - slag basicity, -          b3 = -0.000651258 

Y3 - hot blast temperature, 0C        c3= 3.2731·10-6 

Y4 - hot blast moisture, g/m3        d3 = 7.8128·10-6 

Y5 - P2O5 containing in top dust, %       e3 = -0.030535552 

Y6 - slag mass, kg/tHM         f3 = -4.83466·10-11 

Y7 - P2O5 containing in HM at previous tap, %      g3 = 0.317267771 

Y8 - P2O5 input with the burden,  kg/tHM       h3 =  0.132052768 

Y9 - P2O5 containing in coke ash, %       i3 = 0.291710723 

           y3 = -0.28 



®

2016 ����*+�	����*6�	�*/01-���
�-�����	�!�"#$
��-����

 

 

125 

 

Figure 3 Comparison of phosphorus prediction by different models with real measurement 

From Figures 1 - 3 can be concluded that predicted by ANN values are closer to real parameters of hot metal, 
so at prediction of Si, S and P containing neural networks are more effective than linear regression method.  

4. CONCLUSION 

Intelligent systems, imitating action of biological systems, allow for efficient and effective problem solving, 
which were previously seen as problems typically "human", such as image recognition and speech recognition 
trends. Their capabilities can also be used to solve a completely different kind of problems, such as modeling, 
control systems in real time, signal filtering, noise reduction, image analysis or classification. 

Participation of models using artificial intelligence, particularly in systems of supporting the work and blast 
furnaces control is very justified. These models can work independently, it can also be a way to duplicate a 
solution based on the description of physical phenomena and confirm it or deny. However, this requires a lot 
of work in the future, analysis, modeling and experience to be able to describe in detail so complicated working 
unit as a blast furnace by neural networks. 

ACKNOWLEDGEMENTS   

The work has been financed from the budget resource as statutory research No. 11.11.110.293. 

REFERENCES 

[1] SIBAGATULLIN, S.K., KHARCHENKO, A.S., BEGINYUK, V.A.: Processing Solutions for Optimum 
Implementation of Blast Furnace Operation, Metallurgist, 2014, vol. 58 Issue: 3-4, pp. 285-293. 



®

2016 ����*+�	����*6�	�*/01-���
�-�����	�!�"#$
��-����

 

 

126 

[2] PUSTEJOVSKA, P., BROZOVA, S., JURSOVA, S. Measures to Reduce CO2 Emissions in Metallurgy According 
to Processes in Blast Furnace. In METAL 2011: 20th Anniversary International Conference on Metallurgy and 

Materials, Ostrava: TANGER, 2011, pp.32-37. 

[3] PUSTEJOVSKA, P. JURSOVA, S.: Process Engineering In Iron Production, Chemical And Process Engineering-

Inzynieria Chemiczna I Procesowa, 2013, vol. 34, iss. 1, pp. 63-76  

[4] RADHAKRISHNAN, V. R., MOHAMED, A. R.; Neural networks for the identification and control of blast furnace 
hot metal quality, Journal of Process Control, 2000, no. 10, pp. 509 - 524. 

[5] BULSARI, A., SAXEN H.; Classification of blast furnace probe temperatures using neural networks, Steel 

Research, 1995, no. 6, pp. 231 - 236. 

[6] ZUO, G., MA J., BJÖRKMAN, B.: Some applications of neural networks for prediction of blast furnace 
irregularities, Steel Research, 1998, no. 2, pp. 41 - 47. 

[7] KLIMCZYK, A., STACHURA, R.; World-Wide Application Of Neuron Networks For Blast Furnace Process 
Optimization, Hutnik - Wiadomo�ci Hutnicze, 2004, no 2, pp. 66 - 70. 

[8] ZHANG, H., YIN Y., ZHANG, S.: An improved ELM algorithm for the measurement of hot metal temperature in 
blast furnace, Neurocomputing, 2016 vol. 174, pp. 232-237 

[9] YANG, Y., ZHANG, S., YIN, Y.: A modified ELM algorithm for the prediction of silicon content in hot metal, Neural 

Computing & Applications, 2016, vol. 27 iss. 1, pp. 241-247 . 

[10] KLIMCZYK, A., BERNASOWSKI, M., STACHURA, R., LEDZKI, A.: Reduction of silicon in blast furnace. In Metal 

2014: 23rd international Conference on Metallurgy and Materials Ostrava: TANGER, 2014, pp. 159-164. 


