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Abstract   

The paper deals with the problem of statistical process control (SPC) applied on the process of moulding tin 
coated cold rolled steel. The process level fluctuates around the historical mean, subgroup averages in the X-
bar control chart show an extensive variation and as a result, frequent signals occur. Considering the high 
process capability, it would be pointless to seek assignable causes and take measures to remove this variation 
at the current state of the art; it is regarded an inherent part of the process. From this reason the classical X-
bar control chart cannot be used. The solution consists in relaxing control limits so that only major shifts of the 
process mean are signalled. Several approaches based on a chosen time-dependent distribution model of the 
process are considered in the paper. Methods of the model identification and formulas for the construction of 
extended control limits are applied on two controlled quality characteristics, the planarity and length of moulded 
frames to show calculations for both one-sided and two-sided specifications. Moreover, calculation of capability 
and performance indices for the time-dependent models is discussed.  

Keywords: Acceptance control chart, extended limits, modified control chart, process performance gaps  

1. INTRODUCTION     

Statistical process control is widely used in industry and the Shewhart chart is the most known tool of SPC. 
Basically, the aim of the X-bar chart is to control the process mean stability across the time. Originally, the aim 
of the control chart was to achieve continuous improvement in quality. However, as the quality of some 
processes improved, the process variation became so small compared to the specified tolerance limits, than 
further improvement does not seem economical. In some applications, minor shifts of the process mean are 
not considered a reason for intervention in the process. In this sense, a lot of redundant signals occur due to 

relatively narrow control limits based on a small process σ . The moulding process analyzed in the paper is an 
example of such application. Then the control chart should be rather used to monitor the process.  

In [1] several time-dependent process models are distinguished according to the stability of the process mean 
and instantaneous variation and according to the type of instantaneous and outcoming distribution. The non-
constant process mean is typical for the type C processes. In this paper random changes of the process mean 
are analyzed and models C1 assuming the normal outcoming distribution and C2 with a non-normal outcoming 
distribution are considered. Model C3 with systematic changes of the process mean was applied in [2]. 

The problem of adjusting control limits was solved in literature and various methods were introduced. The chart 
with extended limits [3], modified control chart, see e.g. [4], acceptance control chart [5], [6], [7] are used in 
this paper. The effective application of these methods requires some statistical knowledge, e.g. of ANOVA, 
distribution model identification, and others. The aim of the paper is to design a suitable control chart for the 
selected moulding process.  

Apart from the control chart design, the process performance evaluation is important. Several constructions of 
performance indices were designed [8] but only some of them seem to be justified and are used in this paper. 
While the difference between type C1 and C2 processes may not be important when the X-bar control chart 
limits are constructed, the careful model identification plays a key role in the process performance evaluation 
where individual observations are treated. Therefore a detailed process analysis, which is described in this 
paper, is a necessary condition for the correct estimate of performance indices. 
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2. METHODS 

2.1. Process model identification     

To choose a suitable time-dependent model, homogeneity of the process mean and variance must be 
assessed as well as the type of both the instantaneous and outcoming distribution. The analysis is based on 
the ANOVA model with random effects, which reflects possible random changes of the process mean, 

ij j ijx aµ ε= + +  (1) 

where xij is the ith observation in subgroup j, µ is the grand mean, aj ~ N(0, 2

Aσ ) is the random effect of subgroup 

j, and εij ~ N(0, 2σ ) is the random error effect. The null hypothesis H0: 2

Aσ  = 0 states that the process mean is 

constant. The test statistic is F = MSA/MSE (Table 1). Rejection of H0 implies that the sample mean variation 
is significant and consequently, the classical control chart is unusable.  

Table 1 ANOVA  

Source of 
variation 

Sum of 
Squares 

Df Mean Square F-ratio 

Subgroups SSA k - 1 MSA = SSA/(k - 1) MSA/MSE 

Residual SSE k(n - 1) MSE = SSE/(k(n -1))  

Total SST kn - 1   

The F-test is quite robust and so the assumption of normality is not critical in ANOVA. The effects of departure 
from normality on X-bar charts are not serious unless the instantaneous distribution is extremely non-normal. 
However, the proper model identification plays a key role in the process performance evaluation. Both tests 
and graphical methods are used to check for normality: Anderson-Darling (AD), Ryan-Joiner (RJ), Kolmogorov-
Smirnov (KS), Shapiro-Wilk (SW), tests of skewness and kurtosis, and probability plots. The null hypothesis 
represents the assumption of normality. If the p-value associated with the test statistic chosen is greater than 
0.05 (or 0.1), the variable of interest is assumed to follow a normal distribution. The probability plot helps to 
assess the cause of possible rejection of the normality assumption.  

2.2. Control charts with adjusted limits 

In a more general meaning, a process may be considered in control if the process mean fluctuates between 
some specified limits. To distinguish special causes from the random mean fluctuation, the adjusted control 
limits must be wider than the classical 3-sigma limits. Several approaches can be used to adjust the X-bar 
control limits. 

The extended control limits are constructed at 3-sigma distance outwards from the limits for the process mean, 

which are located at the distance of ∆ from the centre line 

ˆ3
UCL x

n

σ
= + + ∆           

ˆ3
LCL x

n

σ
= − − ∆  (2) 

The choice of constant ∆ can be based on technical or economic considerations. Here ∆ = 1.5 ˆ
Aσ was chosen 

[1], where 2

Aσ  and 2σ are the variance components from model (1) that measure the fluctuation of the mean 

and the instantaneous inherent variation, respectively. They are estimated from the ANOVA table (Table 1) by 

2
ˆ

A

MSA MSE

n
σ

−
=       2

ˆ MSEσ =   (3) 
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Another way consists in constructing 3-sigma limits for subgroup means directly, based on their observed 
variation. The subgroup means are assumed to follow normal distribution and the limits are 

ˆ ˆ3 xUCL µ σ= +      ˆ ˆ3 xLCL µ σ= −       (4) 

where ˆ /1.128xx MRσ = , 
1j j jMR x x −= −  for  j = 2, 3, ..., k. Other estimates are also possible, see [9], [10].  

Completely different approach is based on tolerance limits USL, LSL and a specified fraction of nonconforming 
units. Either the limits for the process mean are chosen to ensure the fraction of nonconforming of at most pA 

with the type I error risk of α and the control limits are determined by 

1

1

ˆ
ˆ

Ap

u
UCL USL u

n

ασ
σ −

−= − +
     

1

1

ˆ
ˆ

Ap

u
LCL LSL u

n

ασ
σ −

−= + −  (5) 

or the process fraction nonconforming pR is specified together with the type II error risk of β, i.e.  

1

1

ˆ
ˆ

Rp

u
UCL USL u

n

βσ
σ −

−= − −      
1

1

ˆ
ˆ

Rp

u
LCL LSL u

n

βσ
σ −

−= + +  (6) 

where 

 
2

ˆ /R dσ =  and d2 can be found for a given n in [11].  

Frequently 
1

u α− = 3 and 
1

u β− = 1.645 are chosen. The former option imitates 3-sigma limits in the Shewhart 

chart, the latter value corresponds to β = 0.05.  As for 
1 Apu −

and 
1 Rpu −

, the Table 2 can be helpful; pout denotes 

the fraction of nonconforming units under the condition that the mean process µ is shifted by 1.5σ from the 
centre towards USL or LSL and the process capability corresponds to Cp. The value close to the observed 
process Cp or Cpk should be chosen. 

Table 2 Choice of u-scores  

p
C   

1 outpu −  
outp   

1.67 3.5 2.33 x 10-4 

2 4.5 3.398 x 10-6 

2.33 5.5 1.899 x 10-8 

2.67 6.5 4.016 x 10-11 

3 7.5 3.186 x 10-14 

2.3. Process performance 

If the process mean fluctuates, the performance of the process is evaluated rather than its capability. Two 
situations are distinguished dependent on the form of the outcoming distribution.  

For normal distribution the formulas 

/
6

p

B W

USL LSL
P

σ

−
=      

/
3

pU

B W

USL
P

µ

σ

−
=

     /
3

pL

B W

LSL
P

µ

σ

−
=  (7) 

are used, where 
/B W

σ  is estimated using variance components, i.e. 2 2 2

/
ˆ

B W Aσ σ σ= + . For a two-sided 

specification Ppk is determined as the minimum from PpU and PpL.  
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For a non-normal distribution the indices are determined according to [8] 

0.99865 0.00135

p

USL LSL
P

x x

−
=

−
     0.5

0.99865 0.5

pU

USL x
P

x x

−
=

−
     

0.5

0.5 0.00135

pL

x LSL
P

x x

−
=

−
 (8) 

where the percentiles x0.99865, x0.5 and x0.00135 are estimated dependent on the identified distribution. Weibull or 
lognormal distributions are frequently used models. Otherwise, Pearson or Johnson curves may be useful.  

3. MOULDING PROCESS 

3.1. Description of the current process control 

In one of the manufacturing processes in Laird company 
frames from tin-plated cold-rolled steel are moulded 
(Figure 1). In 4-hour intervals subgroups of 5 frames are 
taken from the process and the length, width and height are 
measured optically by Micro-Vu Excel 4520 with the scale 
resolution of 0.5 �m. Since the process level fluctuates over 
time, which is typical for moulding processes, subgroup 
averages plotted in the classical X-bar chart with 3-sigma 
control limits show an extensive variation and frequent 
signals occur, see Figure 2 for Length. Owing to the fact that 
all observations are well inside the specified tolerance limits 
USL and LSL, workers responsible for the process use other 
action limits in the control chart. They are chosen empirically 
based on the tolerance limits. The action limits are drawn symmetrically around the centre line at target T and 
their distance equals 0.8(USL - LSL). Points outside these limits signal an assignable cause which has to be 
removed.  
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Figure 2 Shewhart control charts for Length     Figure 3 Shewhart control charts for Planarity 

Except for the three dimensions, the planarity is calculated using height measurements at twelve specified 
points as the difference between the maximum and minimum observation. For variable Planarity only the upper 
tolerance limit USL is specified. 

Since the use of the classical control chart is pointless, charts with adjusted control limits are designed in this 
paper to signal a change in the mean beyond the common fluctuation. Only two variables were chosen for 
illustration; the frame length with the specification of 35 ± 0.1 mm and the planarity with the upper tolerance 

Figure 1 Frame moulded 
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limit of 0.12 mm. The analyzed part of 25 subgroups from the moulding process is considered in control in view 
of the process mean fluctuation.  

The classical X-bar and R chart with 3-sigma limits are displayed in Figures 2 and 3. The red points in the X-
bar chart lying outside the control limits are not considered to be the signals of special causes.  

3.2. Control charts for Length 

As confirmed by ANOVA (Table 3), the variation of the process mean is highly significant (the p-value less 
than 0.001).   

Table 3 ANOVA for Length 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

Between groups 0.0131689 24 0.000548703 44.64 0.0000 

Within groups 0.00122915 100 0.0000122915   

Total (Corr.) 0.014398 124    

Most normality tests in Table 4 indicate a non-normal outcoming distribution (p-value < 0.05); based on the 
last two rows, it is the sample kurtosis which does not correspond to a normal distribution, see also the 
probability plot next to the p-values. The instantaneous distribution examined through residuals from ANOVA 
can be assumed normal (almost all p-values are greater than 0.1), see also the other probability plot. 

Table 4 Checking for normality of Length 

Outcoming distribution Instantaneous distribution 

Test P-value Probability plot Test P-value Probability plot 

AD < 0.005 
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RJ 0.021 RJ > 0.1 

KS 0.039 KS 0.085 

SW 0.000 SW 0.350 

Skewness 0.741 Skewness 0.906 

Kurtosis 0.000 Kurtosis 0.474 

The adjusted control limits obtained by different methods together with the values needed for their calculation 
are displayed in Table 5 and in Figures 4 and 5. For the modified limits the value of u1-pA corresponding to Cp 
= 2.33 was chosen, for the acceptance control chart u1-pR relates to Cp = 1.67 (Table 2).  

Table 5 Adjusted control limits for Length 

Method Input values LCL UCL 

ANOVA 2
ˆ

Aσ = 1.07 x 10-4, 2σ̂ = 1.23 x 10-5 35.039 35.079 

Sample means ˆ
xσ = 0.00997 35.029 35.089 

Modified 1 Apu − = 5.5,  
1

u α− = 3 34.921 35.079 

Acceptance 1 Rpu − = 3.5,  
1

1.645u β− =  34.927 35.073 
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As can be seen from Figure 4, the extended limits are adjusted to the observed subgroup mean variation, 
differently from the limits of both modified and acceptance control chart (Figure 5) that are derived from the 
target value and specified tolerance limits USL and LSL. All pairs of limits are wide enough for observed 
subgroup means to appear within these limits. The process is stable in a more general sense but obviously, 
its centre line is quite distant from the target (Figure 5). 
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Figure 4 Chart with extended limits        Figure 5 Modified/acceptance control chart 

3.3. Process performance for Length 

With regard to the results in Table 4, the outcoming distribution cannot be considered normal. Since no known 
theoretical distribution could be identified, the Johnson transformation was used. The transformation of type 
SB determined in Minitab is described by the equation 

35.0356
0.0952 0.8485 ln

35.0803

X
Y

X

−� �
= − + ⋅ � �

−� �
 

The percentiles 
0.00135

x̂ = 35.0365, 
0.5

x̂ = 35.05 and 
0.99865

x̂ = 35.0766 needed in (8)
 
were obtained by the 

inverse transformation of 
0.00135

ˆ 3 yy y s= − ,
0.5

ŷ y= and 
0.99865

ˆ 3 yy y s= + using the Solver Tool in Excel, where 

y  and y
s  denote the sample mean and sample standard deviation of the normally distributed transformed 

variable Y. For comparison, the performance indices under the normality assumption are calculated ( 2

/
ˆ

B Wσ = 

0.0109). 

Table 6 Process performance indices for Length 

Method 
ˆ
p

P   ˆ
pL

P  ˆ
pU

P  ˆ
pk

P  

Johnson transformation 4.985 11.124 1.878 1.878 

Formulas (7) 3.048 4.847 1.250 1.250 

3.4. Control charts and the performance index for Planarity 

The variation of the process mean is highly significant, see Table 7 (8. subgroup was dropped due to its 
excessive range, see Figure 3).   

The results of normality tests for the outcoming distribution (Table 8) are rather ambiguous. Apparently the 
kurtosis differs from a normal distribution, see the probability plot. The instantaneous distribution of Planarity 
can be considered normal, based on both the p-values and probability plot in the right part of Table 8. 
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Table 7 ANOVA for Planarity 

Source Sum of Squares Df Mean Square F-Ratio P-Value 

Between groups 0.00892871 23 0.000388205 9.68 0.0000 

Within groups 0.00384908 96 0.0000400945   

Total (Corr.) 0.0127778 119    

Table 8 Checking for normality of Planarity 

Outcoming distribution Instantaneous distribution 

Test P-value Probability plot Test P-value Probability plot 

AD 0.122 
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AD 0.047 

��� ��������0����0��� 

##�#

##

#!

#�

*�

$�

%�
!�

&�

"�

 �

��

!

�

���


������	����

�
�

�
�
	
�

 

RJ > 0.1 RJ 0.055 

KS > 0.15 KS 0.067 

SW 0.016 SW 0.331 

Skewness 0.480 Skewness 0.228 

Kurtosis 0.015 Kurtosis 0.094 

The adjusted control limits for Planarity obtained by different methods together with the values needed for their 
calculation are displayed in Table 9 and drawn in Figure 6. Because of the one-sided specification, only the 
upper control limit is of interest. Both formulas (7) and (8) were used to evaluate the performance of Planarity. 

Under the normality assumption ˆ
pUP = 1.907, the use of the Johnson transformation described by Y = - 0.3236 

+ 1.12215·ln[(X - 0.0308)/(0.0834 - X)] gives ˆ
pUP = 2.301.  
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Figure 6 Chart with control limits from Table 9 

Table 9 Adjusted control limit for Planarity   

Control limits Input values UCL 

ANOVA (1) 2
ˆ

Aσ = 6.96 x 10-5, 2σ̂ = 4.01 x 10-5 0.081 

Sample means (3) ˆ
xσ = 0.0093 0.088 

Modified (2) 
1 Apu − = 6.5,  

1
u α− = 3 0.085 

Acceptance (2) 
1 Rpu − = 4.5,  

1
1.645u β− =  0.085 
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Note: The numbers in parentheses relate to the upper control limits in Figure 6. The modified and acceptance 
limits are the same here. 

4. CONCLUSION 

The use of adjusted control limits solves the problem of redundant signals that arise due to the process mean 
fluctuation. All the methods presented can be used to monitor processes of type C1 or C2 with the normal 
instantaneous distribution. But, as was noted above, the assumption of instantaneous normality is not strictly 
necessary. While the extended limits are suited to the current process observations with some acceptable 
mean fluctuation and seem to be suitable primarily in the phase I of SPC, when the process stability is of the 
main interest, the modified or acceptance limits are based on the given specification and apart from stability, 
they enable to control the process location. Both the modified and acceptance limits can be adjusted by the 
choice of an appropriate Cp (Table 2).  

It appears that the difference between the performance index calculated under the assumption of normality 
and the index based on some more appropriate distribution model may be quite large if the underlying process 
is of type C2 and therefore the careful model identification is of great importance. 
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