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Abstract  

The development of fatigue cracks is often analyzed on the basis of their geometry and is explained merely by 

the state of tensions, without the consideration of the microstructure. The crack resistance is, however, strictly 

connected with the microstructure.  

An analysis of the course of the crack development on the working surface of cast steel metallurgical rolls was 

performed. It was stated that the precipitations of ledeburitic and secondary cementite are the ways of an easy 

propagation of the above mentioned cracks. We can observe an especially strong dependence between the 

lattice of ledeburitic cementite precipitations and the lattice of cracks which forms on the surface of the 

metallurgical rolls.  In the case of a continuous lattice of ledeburitic cementite precipitations, there is a 

possibility of chipping of large fragments of the material which correspond to the volume of the primary 

austenite grain. It was stated that the graphite precipitations have an ambiguous role in the formation and 

development of thermal fatigue cracks. The graphite precipitations present on the surface of the roll can 

provoke the nucleation of cracks, whereas the spheroidal graphite precipitations can also block the 

development of the crack. 
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1. INTRODUCTION 

The working conditions of metallurgical rolls set high requirements in respect to the heat resistance and heat-

mechanical resistance of the materials used in their construction. This results from the contact of the roll’s 

surface in the roll gap with the hot (above 900 °C) band and next, the same place being exposed to water 

sprinkling. Such cyclic heating and cooling of the surface layer cause thermal stresses which exceed the 

thermal fatigue resistance and, sometimes, even the yield stress of the material [1]. The development of fatigue 

cracks is often analyzed on the basis of their geometry and explained only by the state of stress, without the 

consideration of the microstructure [2-11]. The fracture toughness of materials is, however, closely connected 

with the microstructure [12-15]. The crack develpoment path can thus be dependent on the phase morphology 

[16-20]. A phase-complex material used in the constrcution of metallurgical rolls is hypereutectoid and 

hypoeutectic cast steel, including the graphitized one [12]. The aim of this work was thus the determination of 
the effect of the sructural elements of metallurgical rolls on the develpoment of crack forming in those rolls 

during operation. 

2. MATERIALS FOR INVESTIGATION 

The tests were performed on 5 metallurgical rolls made of various cast steels. The chemical compositions of 
the examined cast steels are presented in Table 1, whereas their microstructures are compiled in Fig. 1. Fig. 

2 shows the schematics of the passes with the places where the specimen were sampled. The metallurgical 

rolls were made of the following cast steels: G120CrNiMo4-3-3 2116 Mg, G150SiCrNi4-4-3 1502 Mg, 

G200CrNiMo4-3-3 4095 Mg, G200NiSiCr8-4-4 1561 Mg and G200SiCrNi4-4 2578 Mg. 
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Table 1 Chemical compositions (% wt.) of the cast steels used to make the metallurgical rolls  

Cast steel C Mn Si P S Cr Ni Mo V Fe 

G120CrNiMo4-3-3 1.22 0.73 0.51 0.030 0.022 0.99 0.47 0.42 0.02 Bal. 
G150SiCrNi4-4-3 I��� ���� I�IG ���GG ���I� ���� ���� ��I¨ - Bal. 
G200CrNiMo4-3-3 I��� ���� ���� ���G� ����� I��� ���© ���� ���I Bal. 
G200NiSiCr8-4-4 I�¨¨ ���� I��� ���GG ���I¨ I�G� I��I ���� H Bal. 
G200SiCrNi4-4 G��� ��©� I�IG ���G© ���G� ���� ���I ���� ���G Bal. 

�

a) b) c)

d) e)

Fig. 1 Microstructure of the metallurgical roll materials: a) G120CrNiMo4-3-3 cast steel, b)  G150SiCrNi4-4-3 

cast steel, c) G200CrNiMo4-3-3 cast steel, d) G200NiSiCr8-4-4 cast steel, e) G200SiCrNi4-4 cast steel. 

Etched with 2 % nital 

a) b) c) d) e)

Fig. 2 Shapes of the rolls passes with marked places of sampling the specimen: a) G120CrNiMo4-3-3 cast 

steel roll, b) G150SiCrNi4-4-3 cast steel roll, c) G200CrNiMo4-3-3 cast steel roll, d) G200NiSiCr8-4-4 cast 

steel roll, e) G200SiCrNi4-4 cast steel roll 

3. RESULTS AND DISCUSSION 

Favourable conditions for the formation of cracks though precipitations of ledeburitic cementite are proven by 
the observations of the surface layers in cast steel section rolls after operation (Fig. 3 and 4). It can be 

assumed that the second-best facilitators of the nucleation and development of cracks are acicular 

precipitations of secondary cementite (precipitated in the Widmannstätten system). A confirmation of this are 
the examples of cracks presented in Figs. 3c and 4b. As the third development path in respect to facilitating 

the mentioned propagation we can assume to be the lattice of spheroidal precipitations of secondary cementite 

(precipitated on the boundaries of former secondary austenite grains). An example of such crack development 
is shown in Figs. 3d and 3e. The cracks can develop along the lattice of the above precipitations towards the 

inside of the roll (Fig. 3a) but also under its surface (Fig. 4). The second type of crack develops mainly when 

the working surface goes through the volume of the primary austenite grain (surrounded by precipitations of 



����(.�����()���(-./+���
�+�����	�"�#$%
��+� ��

�

�

722 

ledeburitic cementite). A result of such crack formation can be large fragments of materials being spalled off 
the surface of the device during its operation (Fig. 4). 

 a)  b)  c) 

  

d) e) 

Fig. 3 Development of a crack in a metallurgical roll made of G200CrNiMo4-3-3 cast steel: a) deep crack,   

b-c) examples of nucleation and development of cracks along ledeburitic cementite precipitations, 

c-e) examples of development of cracks along secondary cementite precipitations. Etched with 2 % nital 

�]�

�

%]�

�

�]�

�

Fig. 4 Development of cracks along ledeburitic cementite precipitations in the surface layer of metallurgical 

rolls a) G200SiCrNi4-4 cast steel roll, b) G200NiSiCr8-4-4 cast steel roll, c) G200CrNiMo4-3-3 cast steel roll. 

Etched with 2 % nital 

When there are no ledeburitic cementite precipitations in the microstructure of cast steel metallurgical rolls, 
the role in the development of cracks is played by secondary cementite (Fig. 5 and 6). Secondary cementite 

precipitations also facilitate the crack development under the surface of metallurgical rolls in the areas with the 
Bielayev’s point (Fig. 7).  

The effect of ledeburitic cementite precipitations on the formation of thermal fatigue cracks is so significant that 

the lattice of those precipitations corresponds to the lattice of the fire cracks on the working surface of a cast 
steel metallurgical roll (Fig. 8). The morphology of carbides precipitations can thus determine the density of 

the fire cracks occurring on the surface of the device. 
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Fig. 5 Cracks on the working surface of metallurgical rolls developing along the secondary cementite 

precipitations: a) G200NiSiCr8-4-4 cast steel roll, b) G200CrNiMo4-3-3 cast steel roll, c,d) G150SiCrNi4-4-3 

cast steel roll, e,f) G120CrNiMo4-3-3 cast steel roll. Etched with 2 % nital 

a) b)

Fig. 6 Role of agglomerations of secondary cementite precipitations in the crack development in a 

metallurgical roll made from G120CrNiMo4-3-3 cast steel: a) non-etched microsection in the place of the 

occurrence of a single crack, b) place from Fig. a after etching. Etched with 2 % nital 

a) b) c)

Fig. 7 Cracks parallel to the working surface of metallurgical rolls developing along the secondary cementite 

precipitations: a) G150SiCrNi4-4-3 cast steel roll, b) G200SiCrNi4-4 cast steel roll - non-etched microsection, 

c) place from Fig. d after etching. Etched with 2 % nital 

a) b)

Fig. 8 Comparison of the lattice of ledeburitic cementite precipitations and the lattice of cracks on the surface 

of a G200SiCrNi4-4 cast steel metallurgical roll: a) microsection - microstructure - etched with 2 % nital, 

b) roll’s working surface 
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In the case of cast steel metallurgical rolls which contain graphite in their microstructure, it was stated that, 

under tribological conditions which they are exposed to, the graphite from the precipitations on the working 

surface of metallurgical rolls can burn out, and the remaining empty areas become the places of crack 
nucleation (Fig. 9a). The graphite precipitations occurring on the working surface of metallurgical rolls can also 

participate in the nucleation of thermal fatigue cracks as a result of the formation of an indentation by way of 

facilitating the rolling of the material’s matrix in those places. However, the graphite precipitations located on 

the surface take a lesser part in initiating the thermal fatigue cracks than the precipitations of transformed 
ledeburite (Fig. 9b). It should also be noted that the transfer of the thermal fatigue cracks into the matrix takes 

place much more easily from the carbide precipitations than the graphite ones, as the spheroidal shape of the 
graphite precipitations „blunts” the blade of the crack (Fig. 9c). Graphite precipitations can, however, facilitate 

the spalling off of fragments of the roll’s material (Fig. 9d).  

a) b) c) d) 

Fig. 9 Role of graphite in the wear of a G200SiCrNi4-4 cast steel metallurgical roll. Etched with 2 % nital 

CONCLUSION 

Through the appropriate shaping of the microstructure of the cast steels used in the production of metallurgical 

rolls, one can hinder the development of fatigue and/or thermal fatigue cracks. This is confirmed by many 

examples of a correlation between the path of the crack development and the microstructure. In this aspect, 

the morphology of the carbide precipitations is especially important. It has been proven that e.g. the lattice of 

the ledeburitic cementite precipitations can shape the lattice of the thermal fatigue cracks, and parallel to the 

working surface, the precipitations of the ledeburitic cementite facilitate the crack development in the place of 

the occurrence of high shear stresses. In regard to the graphite precipitations, they can be either beneficial or 

disadvantageous in their effect on the above mentioned cracks. That is why the obtained test results provide 

the possibility to point to the directions of optimizing the microstructure of the cast steels used for metallurgical 

rolls with the purpose of hindering the nucleation and development of fatigue and thermal fatigue cracks formed 

as a result of their operation. To that end, one should aim at:  

• fragmenting the continuous carbide lattice, 

• limiting the formation of a lattice of secondary carbide precipitations at the grain boundaries, 

• limiting the existing tendency for grain size reduction, which most often results from the assumed  

• theory of a beneficial effect of grain refinement on the crack resistance, 

• spheoridization and refinement of graphite precipitations. 
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