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Abstract 

One of the standard requirements for automotive industry suppliers within the framework of production part 

approval process is the evidence about capability of manufacturing process. Process capability criteria are 

capability indices whose standard evaluation is based on the assumption of normal distribution of monitored 

quality characteristic. However, the distribution of a series of quality characteristics such as tensile strength, 

hardness, roughness, etc. does not correspond to a normal distribution. The paper deals with the influence of 

skewness of the monitored quality characteristic distribution on the process capability analysis results. They 

are applied different probability distributions for process capability analysis and the achieved results are 

compared and discussed.  
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1. INTRODUCTION  

The evaluation of process capability standardly uses capability indices based on the assumption of normal 

distribution of the monitored quality characteristic [1, 2]. In real practice, however, there are various quality 

characteristics, which natural distribution is not a normal one. They include, for example, taper ratio, flatness, 

roughness, concentricity, alignment, perpendicularity, waviness, straightness, rectangularity, weld strength, 

tensile strength, casting hardness, hole positions, chamfering, or parallelism. Even in these cases, it is 

necessary to find suitable procedures of process capability analysis.  

2. PROCESS CAPABILITY ANALYSIS WHEN DATA NORMALITY IS NOT MET 

The situation where the distribution of the monitored quality characteristic does not correspond to the normal 

distribution can, in principle, be addressed in the following ways [3]:

• data transformation to a variable corresponding to normal distribution

• using another theoretical distribution model

• using indicators that are not based on a concrete model of distribution

However, before using one of the possible procedures to address the issue of not meeting the normality, it is 
desirable to pay attention to its causes. The failure to meet normality may be caused by the occurrence of 

outliers, arising as a result of gross errors of the measurement or data inhomogeneity caused by the change 

of conditions during data collection. In such cases, it is necessary to eliminate the causes or to perform suitable 

data sorting or to collect new data. 

2.1  Transformation of data into a variable corresponding to normal distribution 

The data transformation process can take advantage of the fact that a suitable transformation function can 

help us to convert the measured data to a variable that can meet the normality, and this transformed variable 

can be used for further evaluation. If it is not possible to find a suitable transformation function that would 

ensure sufficient compliance of the transformed data distribution with the normal distribution, it is necessary to 

apply other procedures of capability analysis.  
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2.2 The utilization of another theoretical distribution model 

Another way to solve the problem of non-normality of the monitored quality characteristic is to find another 

suitable model of probability distribution used to describe the distribution of the monitored quality characteristic. 

To verify the suitability of the chosen theoretical model, it is necessary to apply some of the goodness of fit 

test. This procedure may not be successful, just like the data transformation procedure. 

The so-called quantile method [1, 4, 5] is most frequently used to evaluate process capability in case of the 

applications of another distribution model of the monitored characteristic. As in the case of normal distribution, 

where the values of µ - 3σ and µ + 3σ match the quantiles whose distribution function reaches the values of 

0.00135 and 0.99865, in the case of another probability model, you are looking for quantiles corresponding to 
these distribution function values. The corresponding capability index values of Cp and Cpk can then be 

calculated as:

                                                                                                                                (1)     

                                                                                                      (2)    

where:         
USL - upper specification limit 

LSL - lower specification limit 

x0.00135 - 0.135%  quantile of corresponding probability distribution 

x0.99865 - 99.865%  quantile of corresponding probability distribution 

x0.5 - median of corresponding probability distribution. 

2.3 The use of the indicators that are not based on a concrete probability distribution model 

In the event of an unsuccessful data transformation and a failure to find another suitable distribution model of 

the monitored quality characteristic, the process capability can be evaluated using indicators that are used in 

the process capability analysis in case of non-measurable quality characteristics. These are the indicators 
based on the identified proportion of nonconforming units, such as ppm, Sigma level, Equivalent Cp, Equivalent 

Cpk, etc. In addition to that it is possible to use some special capability indices based, for example, on the 

description of the monitored characteristic distribution using empirical functions, but these have not been used 

in practice yet.

3. THE EVALUATION OF THE INFLUENCE OF SKEWNESS ON THE RESULTS OF PROCESS    

CAPABILITY ANALYSIS  

3.1 Data preparation  

For assessing the impact of skewness of the monitored quality characteristic distribution on the results of the 

process capability analysis data files from normal and lognormal distribution (100 values each) were generated 

firstly with using Minitab software. On the basis of this fundamental data eleven data files with different 

skewness from 0.19 to 0.86 were prepared, while the same average value and standard deviation were 

maintained in all files. The prepared data files were considered to be the values of the monitored quality 

characteristic (25 subgroups with the size of 4) collected for the process capability analysis. The relevant 
tolerance limits were set out as follows: LSL = 3; USL = 23.

The values of the sample characteristics of the individual data files are listed in Table 1. The table clearly 

shows that the change of skewness of the distribution of the individual files is accompanied by a change in the 
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kurtosis. The increasing value of skewness is also accompanied by a decrease in the median and an increase 

in the range. 

Table 1 The sample characteristics of the analyzed data files 

Data file

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

Average 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 10.00 

SD 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

Skewness 0.19 0.25 0.31 0.38 0.44 0.51 0.57 0.64 0.71 0.79 0.86 

Kurtosis -038 -0.30 -0.21 -0.11 0.00 0.11 0.24 0.37 0.51 0.66 0.81 

Median 9.76 9.74 9.71 9.69 9.66 9.64 9.61 9.61 9.59 9.53 9.46 

Min 3.92 3.93 3.95 3.97 3.99 4.01 4.04 4.06 4.09 4.12 4.15 

Max 17.93 18.04 18.14 18.25 18.35 18.45 18.55 18.64 18.74 18.83 18.92 

Range 1402 14.11 14.19 14.28 14.36 14.44 14.51 14.58 14.64 14.71 14.77 

Exploratory analysis of the individual data files was performed prior to the actual process capability analysis 

and statistical stability of the simulated processes was verified. It was found that all the data files correspond 

to the processes which are “in control”, so it was possible to assess their capability.

3.2 Testing normality and goodness of fit tests 

The verification of normality of the monitored quality characteristic was performed using the Anderson - Darling 
test in the Minitab software. Based on the assessed p-values (see Table 1), it was found that for files with the 

skewness lower than or equal to 0.57 (files D1 to D7), it is possible to accept the hypothesis, that data are 

corresponding to normal distribution at a significance level of 0.05. Another theoretical model of probability 

distribution using the Anderson - Darling goodness of fit test was required for the remaining four sets. The 

goodness of fit tests were performed with lognormal distribution, three-parameter Weibull distribution, extreme 

values distribution, Gamma distribution, loglogistic distribution, and Burr distribution. The goodness of fit tests 

for these distributions were then applied to the remaining data files. As for the Burr distribution, the goodness 

of fit test was performed using the Kolmogorov - Smirnov test in Easy Fit software (Minitab software does not 

work with Burr distribution). The Easy Fit program with high p-values has confirmed the suitability of Burr 

distribution for all analyzed files; however, the p-values are determined in a slightly different way, so they are 

not entirely comparable with the other p-values.

An overview of the determined p-values of goodness of fit tests for all data files and various probability 
distribution models are presented in Table 2. The overview clearly shows that the distribution of the monitored 

quality characteristic within the given skewness range can be described by various theoretical distribution 

models. The best compliance with the theoretical model is achieved with normal and lognormal distribution (if 

we do not take into account the Burr distribution). 

3.3 Process capability analysis 

A quantile method based on finding a suitable theoretical probability model to describe the distribution of the 

collected data was chosen for the process capability analysis. The values of the necessary quantiles for the 

determined suitable distributions were found using Minitab and Easy Fit software. These values were then 
used to calculate the values of Cp and Cpk indices according to equation (1) and (2). The values of these indices 

were subsequently analyzed according to the skewness of the individual data files. 
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Table 2 P-values of Anderson-Darling goodness of fit tests for various probability distributions 

  
Data file 

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 

P
ro

b
a

b
ili

ty
 d

is
tr

ib
u

tio
n 

Normal 0.711 0.754 0.698 0.551 0.378 0.200 0.086 0.029 0.008 
<0.00
5 

<0.00
5 

Lognormal 0.068 0.147 0.287 0.484 0.675 0.832 0.885 0.867 0.749 0.531 0.314 

Weibull-3par. 
>0.50
0 

>0.50
0 

>0.50
0 

>0.50
0 

>0.50
0 

>0.50
0 

>0.50
0 

0.429 0.198 0.075 0.023 

Extreme 
Values 

0.065 0.134 0.231 
>0.25
0 

>0.25
0 

>0.25
0 

>0.25
0 

>0.25
0 

>0.25
0 

>0.25
0 

>0.25
0 

Gamma 
>0.25
0 

>0.25
0 

>0.25
0 

>0.25
0 

>0.25
0 

>0.25
0 

>0.25
0 

>0.25
0 

>0.25
0 

>0.25
0 

0.131 

Loglogistic 
>0.25
0 

0.152 
>0.25
0 

>0.25
0 

>0.25
0 

>0.25
0 

>0.25
0 

>0.25
0 

>0.25
0 

>0.25
0 

<0.00
5 

Burr  *) 0.915 0.978 0.989 0.999 0.996 0.992 0.985 0.977 0.966 0.952 0.936 

*) p-values of Kolmogorov-Smirnov goodness of fit tests determined by means of Easy Fit software  

The dependences of Cp index determined on the basis of the application of different probability models related 

to the skewness of the monitored characteristic distribution are illustrated in Fig. 1. It clearly shows that the 

type of the used distribution model has quite significant impact on the Cp index value. Cp values depending on 

the type of used distribution model range from 0.67 to 1.23 in case of the analysed data files. The best match 
with the Cp index for normal distribution (within its usability area) is evident for Gamma distribution. 

Fig. 1 The dependences of Cp index on skewness for various probability models 

In most of the used distribution models, the increasing skewness of distribution of the monitored characteristic 
goes hand in hand with a slight increase of the Cp index. The dependence process is completely opposite in 

case of Burr distribution and, for example, in three-parameter Weibull distribution, the value of Cp index is 

practically unchanged. To make a comparison, there are Cp indices determined using the Clements method 

[6]. The values of these indices are among the highest, and they decrease slightly with increasing distribution 

skewness. 

Lower values of the Cp index in practically all probability distribution in comparison with normal distribution 

(excluding the Weibull distribution) are related to longer distances between the quantiles x0,99865 and x0,00135 of 
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these distributions. For example, a comparison of the Cp values shows that the distance of these quantiles in 

case of loglogistic distribution is up to 66% longer than in normal distribution. 

Fig. 2 compares the dependences of Cpk index on the distribution skewness for various theoretical models of 

probability distribution. The figure, again, clearly shows that the used model of probability distribution has 
significant influence on the determined values of Cpk index, their values range from 0.58 to 1.19.

In most cases, the Cpk index is slightly increasing with increasing distribution skewness. The only exceptions 

are the dependencies of Cpk index evaluated using the Burr distribution model and the Clements method, 

where the Cpk initially increases with increasing skewness, but once a certain level has been reached, the 

value is decreasing. This is due to the fact that with lower values of skewness, Cpk corresponds to a partial 

index CpL, and with higher skewness values, to a partial CpU index. The fact that Cpk matches CpU, however, 

does not automatically mean a decreasing dependence, since this situation occurred even when using 

lognormal, loglogistic distribution and in case of extreme values distribution.

Fig. 2 The dependences of Cpk index on skewness for various probability models 

Fig. 3 shows the values of Cp and Cpk indices determined by applying the most appropriate probability 

distribution model for the individual files. The suitability criterion was used to determine the p-value of the 
Anderson - Darling goodness of fit test (see Table 2). In the area of lower skewness (up to 0.38), this most 

suitable model was normal distribution, in higher skewness area, it was lognormal distribution (Burr distribution 

was not included in the selection due to incomparability of the results). The figure clearly shows that the change 
of the used distribution model is accompanied by a step change of both indices. While the value of Cp

significantly drops with higher skewness, the value of Cpk rises significantly. From a practical point of view, it 

always seems to be more suitable to use, provided that the normality condition is met, the normal distribution 

model and to look for another theoretical model only when the normality condition is not met. The situation in 
Fig. 3, however, shows that the use of a more appropriate distribution model could lead to more positive 

conclusions regarding the process capability in such a situation.
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Fig. 3 The values of Cp and Cpk evaluated on the basis of the best probability distribution model for data files 

with different skewness 

CONCLUSION 

The study clearly shows that the results of the process capability analysis for skewed data in the monitored

area depend more on the type of the used probability distribution model, than on the distribution skewness.

These are the reasons why it is advisable to use only a single model, namely the one with the best compliance 

with the actual distribution of the monitored characteristic. Even here, however, you can expect that the change 

of the type of distribution will cause step changes of the capability indices. 
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