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Abstract  

Turfgrass management represents a critical aspect of landscaping, sports fields, and golf course maintenance. 

The efficient logistics of turfgrass, encompassing tasks such as mowing, fertilization, and irrigation, can 

significantly impact its health and aesthetics. In recent years, remote sensing technologies and machine 

learning have emerged as powerful tools for optimizing turfgrass logistics. This work presents a comprehensive 

study on the application of machine learning algorithms to enhance the management of turfgrass through 

remote sensing data. The proposed approach leverages various remote sensing techniques, including satellite 

imagery, unmanned aerial vehicles (UAVs), and ground-based sensors, to gather high-resolution data on 

turfgrass health, moisture levels, and growth patterns. These data sources feed into a machine learning 

pipeline, comprising data preprocessing, feature engineering, and algorithm selection, to develop predictive 

models for turfgrasses. Our findings demonstrate that machine learning models, when trained on remote 

sensing data, can accurately predict turfgrass parameters that can be used to ensure continuous improvement 

in turfgrass logistics. The integration of machine learning into turfgrass logistics not only enhances resource 

utilization but also reduces environmental impact by minimizing unnecessary inputs. We present case studies 

from various landscapes, including sports fields and golf courses showcasing the practicality and adaptability 

of our approach. 
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1. INTRODUCTION 

Integration of machine learning methods and remote sensing technology marks a major transformation in 

agricultural logistics, particularly in the field of grass-cover management. The application of these techniques 

addresses a wide range of challenges in turfgrass logistics, including resource allocation optimization, 

precision farming, and sustainability. This paper presents a new approach to revolutionizing turfgrass 

management by leveraging machine learning and remote sensing. 

Turfgrass is an essential component of residential and commercial landscapes, sports fields, and public 

spaces, requiring a high level of attention and precision in cultivation and maintenance. Traditional 

management methods for turfgrass logistics are labor-intensive and often rely on experience rather than data-

based strategies. Remote sensing technologies such as satellite images and unmanned aerial vehicles (UAVs) 

provide extensive spatial and temporal data that have not been used until recently due to the complexity of 

their integration into practical applications. In this paper, we took an opportunity to apply machine learning 

methodologies and propose a framework that allows it to learn from data and furthermore, offers an 

unprecedented opportunity to analyze and interpret the remote sensing data sets. Such a strategy allows for 
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predictive modeling enabling more efficient and effective management of turfgrass logistics. The introduction 

of artificial intelligence into turfgrass management can lead to improvements in irrigation, fertilization, pest 

control, and harvesting schedules, thereby optimizing the supply chain, and reducing environmental impact. 

This paper explores the latest advances in machine learning (ML) algorithms for the processing and analysis 

of remote sensing data. We investigate the potential of ML to improve the precision of turfgrass cultivation by 

predicting the general aspect, uniformity of turfgrass, leaf color and slenderness. In addition, we inspect a 

possibility of turfgrass mineral content estimation based on multispectral imagery. We also discuss the practical 

implications of applying these technologies in real-world environments, the challenges, and limitations to be 

faced, and the future direction of improved turfgrass logistics using machine learning. 

By demonstrating how ML can extract meaningful insights from remotely sensed data, this paper aims to 

provide a comprehensive overview of machine learning applications in turfgrass logistics and to offer a 

roadmap for future research and implementation in this field. Through this exploration, we underscore the 

importance of integrating innovative technologies to sustainably meet the growing demand for high-quality 

turfgrass in an era of limited natural resources and environmental change. 

2. MATERIALS AND METHODS 

Multispectral imagery is a powerful and versatile technology that captures data across multiple distinct bands 

or wavelengths of the electromagnetic spectrum. Unlike traditional single-band or panchromatic imagery, each 

band of multispectral imagery provides unique information about the surface or objects being observed, 

allowing for a more comprehensive analysis of the environment [1]. By combining data from multiple spectral 

bands, multispectral imagery enables us to discriminate between different surface materials, detect changes 

over time, assess vegetation health, and identify mineral content with good precision. In this section, we depict 

our research methodology, which played an essential role in achieving accurate and efficient classification of 

turfgrass using multispectral imagery and machine learning techniques.  

2.1 MULTISPECTRAL IMAGERY DATABASE 

The database used in this research uses multispectral imagery data obtained from digital drone cameras. 

Dataset was collected during a long-term experiment performed by agricultural and teledetection scientists. 

Field experiments were carried out over two vegetation cycles at the Experimental Station of the University of 

Agriculture in Krakow from 2021 to 2022. Five grass mixtures were sown on 80 experimental fields, which 

were subsequently divided into extensive and intensive parts. The former received a more intensive 

supplementation process and more frequent mowing, following the maintenance guidelines provided by 

COBORU (Research Centre for Cultivar Testing). Weather conditions during the experimental period favored 

sustainable grass growth, with average air temperatures ranging between 15.3 and 16°C throughout the 

vegetation months (April–September). Additionally, the average rainfall levels were approximately 300–400 

mm in 2020 and 2022, with higher values of around 600mm recorded in 2021. During prolonged drought 

periods, the intensive fields were systematically watered every 3 days. The UAV images were gathered weekly  

with a standard RGB camera and a multispectral camera covering ten bands of the light spectrum: 1) Blue 475 

nm, 2) Green 560 nm, 3) Red 668 nm, 4) Red Edge 717 nm, 5) Near Infrared 842 nm, 6) Blue 444 nm, 7) 

Green 531 nm, 8) Red 650 nm, 9) Red Edge 705 nm, 10) Red Edge 740 nm. Each flight session included a 

detailed assessment of each research field by experts, focusing on the general aspect, leaf color, slenderness, 

and uniformity of turfgrass, each rated on a 1–9 scale. At the same time, three primary in-situ measurements 

were taken using ground-based sensors: NDVI, LAI, and SPAD, providing a multifaceted understanding of the 

turfgrass's health and development. For a more comprehensive understanding of the turfgrass's health and 

the environmental conditions affecting it, auxiliary measurements like moisture level, dry biomass, and wet 

biomass were also included. Each month, laboratory analysis was conducted on probes collected from each 

experimental field to estimate both micro- and macroelements, adhering to the AOAC (2006) Method [2]. This 
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rigorous approach allowed for a detailed understanding of the nutrient composition through the determination 

of nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), sodium (Na), manganese 

(Mn), iron (Fe), zinc (Zn), and copper (Cu) content.  

During the experiment, drone flights sessions were precisely coordinated to occur on the same days as the in-

situ and laboratory measurements. This alignment ensured consistency in data collection across different 

methodologies. In the first year, a total of 5171 images were collected, each cropped to single experimental 

field. In the second year, the number of images collected was 1625. This systematic approach allowed for a 

detailed and time-aligned comparison of visual, in-situ, and laboratory data. The data collection process 

involved expert evaluation of visual aspects of the turf as well as in-situ and laboratory measurements. Such 

data is more suitable for regression tasks in machine learning (ML) algorithms, as it involves predicting a 

continuous output, like nutrient levels or plant health indices, based on the observed measurements. In 

Table 1, we gathered the number of collected measurements.  

Table 1 Number of collected images   

 

 

Visual evaluation In-situ measurements 

LABoratory 
general aspect and 

uniformity of turfgrass 
leaf color and 
slenderness 

SPAD NDVI LAI 

2021 1980 1760 1968 3926 3220 1780 

2022 3124 2872 1221 1784 1703 1631 

total 4104 2632 3189 5710 4923 3411 

2.2 MACHINE LEARNING FRAMEWORK FOR TURFGRASS ANALYSIS 

In this paper, we aim to analyze a machine learning (ML) framework tailored for the analysis of turfgrass 

logistics. This framework stands at the intersection of advanced data analytics and practical turf management, 

aiming to streamline and enhance the logistical aspects of turfgrass care. By integrating data from expert 

evaluations, in-situ and laboratory measurements, and UAV imagery, the framework is designed to, in the 

future, help optimize resource allocation, maintenance schedules, and treatment applications. The core goal 

is to employ ML algorithms to uncover insights and patterns that are able to evaluate visual drone imagery to 

evaluate the visual turf aspect as well as predict the in-situ and mineral content of the turfgrass area. Such a 

procedure can then be used for more efficient and effective turfgrass logistics strategies. This approach not 

only represents a novel application of ML in turf management but also can change the way turfgrass logistics 

are approached, leading to more sustainable and cost-effective practices. 

The use of machine learning in UAV remote sensing for precision agriculture is a rapidly evolving field, with a 

focus on feature extraction and model performance [3]. In precision agriculture, UAV remote sensing has 

shown promise in drought stress, weed and pathogen detection, nutrient status assessment, and yield 

prediction, with potential for further research in data integration and model development [4]. In the described 

study, from the vast range of machine learning algorithms available, we selected deep artificial neural 

networks. In general, deep neural networks have been found to outperform shallow networks in terms of 

efficiency and function approximation [5–7]. In 2018, Baral et al. suggested that the success of deep networks 

could lie  in their parallel structure [5]. Linag and Srikant demonstrated that deep networks require exponentially 

fewer neurons than shallow networks for the same level of function approximation [6]. Then, in 2020, Bokati 

et al. described a study that supports the efficiency of deep learning, providing a theoretical explanation for its 

superiority over support vector machines [7]. Together, these studies underscore the importance of the depth 

and architecture of deep neural networks in enhancing their performance. Furthermore, we investigated deep 

learning approaches well suited for digital image and signal processing. In literature, one can notice that deep 
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learning methodologies, particularly convolutional neural networks (CNNs), have demonstrated superior 

performance [8–11].  This is due to their ability to automatically learn and extract relevant features from images 

[8, 9]. CNN’s showed their potential, especially in medical image analysis, where they have shown remarkable 

success in various tasks including feature representation, detection, segmentation, classification, and 

prediction [8]. Furthermore, the use of deep neural networks has been shown to improve the speed and quality 

of 3D image processing, outperforming conventional methods [10]. However, despite their great potential, 

these techniques depend on large datasets, which can be a limitation in certain applications [11]. In the 

subjected studies, we have collected a reasonable-sized database that allows us to take advantage of deep 

learning methodology, leading to the proposition of a framework that is schematically depicted in Figure 1. 

 

Figure 1 Diagram of a proposed framework 

The primary task of assessing turfgrass condition was divided into classification and regression sub-tasks. 

Classification task was applied for a visual assessment and regression, or parameter estimation was utilized 

for continuously measured parameters, both in the field and laboratory. After experimenting with various 

solutions, including popular pre-trained deep neural models, we opted to develop custom convolutional 

network architectures tailored to our training data's unique nature. Since different amounts of data were 

available for different parameters, we chose to construct separate classifiers and regressors for each estimated 

parameter. This decision offered several advantages, including computational efficiency, as these models had 

low complexity. Additionally, it allowed us to train only the networks for which new data became available. 

These individual networks did not share their weights, as we found this approach to be more efficient; it was 

challenging to determine which model performed the best feature extraction. Therefore, each network was 

trained independently for its specific task. These custom structures take a small patch from the multispectral 

10-channel image as their input and extract essential features through convolutional and fully-connected layers 

for final estimation or classification. Consequently, once a sufficient amount of prepared multispectral imagery 

of the analyzed surface is collected, one can promptly obtain the model's inference results. 

3. RESULTS 

In this section, we show the results that were obtained with the application of our deep learning framework to 

the database collected during our research. These outcomes not only reflect the effectiveness of the employed 

methodologies but also provide insights into the turfgrass analysis. The data, encompassing both qualitative 

expert evaluations and quantitative measurements, have been analyzed, revealing patterns and correlations 

in the data. The described findings are crucial in understanding the broader implications of our study and in 

guiding future research directions in the field of turfgrass logistics.  
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In Table 2, we gathered the results on automated visual evaluation results for different numbers of classes, 

and in Table 3, we provided correlations between machine learning models and real measurements. From 

Table 2, it can be seen that classification accuracy decreases with increasing number of classes. For example, 

when there are only 3 classes, the accuracy is 0.847, but it drops to 0.667 for 9 classes. One could say that 

the neural network's performance is influenced by the complexity of the classification task, but it's essential to 

consider the trade-off between the number of classes and model complexity. A higher number of classes often 

requires a more complex model or more training data to maintain high accuracy. The decrease in accuracy 

with more classes might be expected but should be weighed against the specific requirements and objectives 

of the application. Additionally, it can also be noted that he neural network is relatively better at assessing the 

General Aspect than other parameters. Furthermore, from Table 3, it can be noted that the obtained correlation 

of automated mineral content estimation varies across different minerals. For example, labNa has the highest 

correlation at 0.846, while labK has the lowest correlation at 0.634. This suggests that the automated method 

performs better for some minerals compared to others, which could be due to differences in the spectral 

signatures or the complexity of estimating each mineral. SPAD, NDVI, and LAI estimation shows high 

correlation, with values of 0.837, 0.941, and 0.953, respectively. This indicates that the automated approach 

is proficient in estimating these vegetation-related parameters, which are crucial for assessing plant health and 

growth. The correlation of Fresh biomass, Dry biomass, and moisture content estimation varies. This suggests 

that the automated method is particularly effective at estimating moisture content, which can be important for 

understanding plant hydration. 

The results depicted in this paper suggest that the proposed framework is able to evaluate the turf visual aspect 

and estimate the mineral content as well as vegetation indices. Further investigation could involve fine-tuning 

the model architecture or exploring techniques such as data augmentation to improve accuracy, especially 

when dealing with a larger number of classes. Further investigation into the automated mineral content 

estimation, especially for minerals with lower accuracy, could involve data preprocessing techniques, feature 

selection, or the use of different machine learning algorithms. Additionally, for vegetation parameters and 

biomass estimation, the high accuracy indicates the potential for automation in agricultural or ecological 

monitoring tasks. 

Table 2 Automated visual evaluation results  

Number of classes 

Neural network (Acc) 

General Aspect Leaf color slenderness uniformity of turfgrass 

3 0,847 0,849 0,870 0,837 

5 0,808 0,789 0,782 0,763 

6 0,755 0,706 0,740 0,754 

9 0,667 0,639 0,671 0,766 

Table 3 Automated mineral content estimation results  

labN labP labMg labK labNa labCa labZn labFe labMn labCu 

0,817 0,715 0,701 0,634 0,846 0,750 0,766 0,664 0,714 0,806 
 

SPAD NDVI LAI Fresh biomass Dry biomass moisture content 

0,837 0,941 0,953 0,743 0,756 0,931 
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4. CONCLUSIONS 

In this study, we have explored and analyzed the applicability of machine learning algorithms for the processing 

and analysis of remote sensing data. The provided data shows that the accuracy of the neural network is 

satisfactory and in average more than 70%. This result is promising considering the difficulty of the task. 

Furthermore, Automated mineral content estimation results provide valuable insights into the accuracy of 

automated mineral content estimation and the estimation of various other important parameters. The data can 

guide decisions on the suitability of automated methods for specific agricultural or environmental applications.  

Based on the results analysis, we can confidently conclude that the proposed framework holds significant 

practical potential. It stands as a promising and reliable tool capable of supporting the crucial work of 

greenkeepers. This framework empowers greenkeepers with the means to assess the effectiveness of 

agrotechnical treatments in a more accurate and objective manner. Such a contribution is invaluable in the 

realm of turfgrass management, as it not only enhances the precision of evaluation but also streamlines 

decision-making processes, ultimately benefiting the overall quality and health of the turfgrass surfaces under 

their care. 
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