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Abstract 

The job scheduling problem is one of the biggest optimization challenges for manufacturing companies. A 

properly performed planning can reduce both cost and production time. A scheduling problem that has been 

the subject of research in numerous research papers is the permutation flow shop scheduling problem (PFSP) 

with makespan as optimization (minimization) criterion. Frequently used algorithms to solve PFSP is the 

constructive deterministic heuristic algorithm NEH. Many researchers have analyzed the effectiveness of the 

NEH algorithm. An example of the issues studied is the importance of the order of input data on the results 

obtained by the NEH algorithm. In the literature, a number of variants of NEH-based algorithms can be found. 

The N-NEH+ algorithm is considered to be one of the most efficient. Therefore, this paper focuses on analyzing 

the influence of the input sequence on the results obtained by the N-NEH+ algorithm. Two most popular 

benchmarks were used to analyze the influence of the input sequence: the Taillard's benchmark and the VRF 

benchmark. The results obtained confirm that the input sequence has a significant impact on the results 

obtained by the N-NEH+ algorithm. However, this influence is less than that of the NEH algorithm.  
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1. INTRODUCTION 

The permutation flow shop scheduling problem (PFSP) is a production problem for finding the best sequence 

of jobs to be processed in minimizing a given objective function (e.g. makespan, tardiness, cost or flow time). 

A characteristic of PFSP is that the order of execution of all of the n jobs is the same for each of the m 

machines. In this paper, the makespan value (Cmax) is used as an optimization criterion. The problem thus 

defined can be written as Fm|prmu|Cmax [1]. For the number of machines more than 2, Fm|prmu|Cmax is an NP-

hard problem [2]. 

Due to the complexity of PFSP, heuristic algorithms are applied to solve it. One of the most popular heuristics 

used is the NEH algorithm [3], whose operation can be described in the following three steps: 

1) Sort in non-increasing order the list of jobs according to their total processing time.  

2) Add the first job from the list to a partial sequence and deletes the job from the list. 

3) Until the list is not empty, add the first job from the list to a partial sequence to get makespan as short 

as possible, and then delete the scheduled job from the list. 

The efficiency of the NEH algorithm is strongly influenced by the first step, which results in the input sequence. 

Many studies have focused on analyzing the impact of the method of determining the priority for each job (after 

which jobs will be subsequently sorted) on the final result of the NEH algorithm [4-12]. One of the most efficient 

modifications of the NEH allogrithm is the N-NEH+ algorithm [13]. The operation of the N-NEH+ algorithm is 

based on the use of the N-list technique. It is a modification of step 3 of the NEH algorithm, by checking not 

one but N jobs each time. This paper focuses on verifying whether the input sequence for the N-NEH+ 

algorithm is as relevant as for the NEH algorithm. 
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2. INPUT SEQUENCE  

Determining the input sequence is the first step of both the NEH and N-NEH+ algorithms. The input sequence 

is created by assigning a priority (pj) to each job and then sorting the jobs according to this priority. For testing, 

selected methods of priority calculation based on the work of [4-11] were used. The jobs for creating the input 

sequence were sorted non-increasing according to job priorities calculated as follows: 

• TPT (NEH): 𝑝𝑗 = ∑ 𝑝𝑖,𝑗
𝑚
𝑖=1  

where pi,j is the processing time of job j on machine i 

• TPT1: 𝑝𝑗 = ∑ 𝑝𝑖,𝑗
𝑚−1
𝑖=2  

• TPT2: 𝑝𝑗 = ∑ 𝑝𝑖,𝑗
𝑚
𝑖=2  

• TPT3: 𝑝𝑗 = ∑ 𝑝𝑖,𝑗
𝑚−1
𝑖=1  

• S: 𝑝𝑗 = ∑ (𝑝𝑖,𝑗)
2𝑚

𝑖=1  

• SR: 𝑝𝑗 = ∑ (𝑝𝑖,𝑗)
1/2𝑚

𝑖=1  

• SP: 𝑝𝑗 = ∑ 𝑖 ∗ 𝑝𝑖,𝑗
𝑚
𝑖=1  

• WSUM: 𝑝𝑗 = ∑ (𝑚 − 𝑖 + 1)𝑝𝑖,𝑗
𝑚
𝑖=1  

• ABS_DIF: 𝑝𝑗 = ∑ ∑ |𝑝𝑖,𝑗 − 𝑝𝑖,𝑗′|
𝑛
𝑗′=1

𝑚
𝑖=1  

• WABS_DIF: 𝑝𝑗 = ∑ ∑ (𝑚 − 𝑖 + 1)|𝑝𝑖,𝑗 − 𝑝𝑖,𝑗′|
𝑛
𝑗′=1

𝑚
𝑖=1  

• SS_SRA: 𝑝𝑗 = ∑ ∑ |𝑟𝑖,𝑗,𝑗′|
𝑚
𝑖=2

𝑛
𝑗′=1,𝑗′≠𝑗  

where: 𝑟𝑖,𝑗,𝑗′ = 𝑝𝑖,𝑗 − 𝑝𝑖,𝑗′ 

• SS_WSRA: 𝑝𝑗 = ∑ ∑ (𝑚 − 𝑖 + 1)|𝑟𝑖,𝑗,𝑗′|
𝑚
𝑖=2

𝑛
𝑗′=1,𝑗′≠𝑗  

• SS_SRS: 𝑝𝑗 = ∑ ∑ (𝑟𝑖,𝑗,𝑗′)
2𝑚

𝑖=2
𝑛
𝑗′=1,𝑗′≠𝑗  

• SKE: 𝑝𝑗 = 𝐴𝑉𝐺𝑗 + 𝑆𝑇𝐷𝑗 + 𝑎𝑏𝑠(𝑆𝐾𝐸𝑗) 

where 𝐴𝑉𝐺𝑗 =
1

𝑚
∑ 𝑝𝑖,𝑗
𝑚
𝑖=1 , 𝑆𝑇𝐷𝑗 = √

1

𝑚−1
∑ (𝑝𝑖,𝑗 − 𝐴𝑉𝐺𝑖)

2𝑚
𝑖=1 , 𝑎𝑏𝑠(𝑆𝐾𝐸𝑗) =

1

𝑚
∑ (𝑝𝑖,𝑗−𝐴𝑉𝐺𝑖)

3𝑚
𝑖=1

(√
1

𝑚−1
∑ (𝑝𝑖,𝑗−𝐴𝑉𝐺𝑖)

2𝑚
𝑖=1 )

3 

• SKEx: 𝑝𝑗 = 𝐴𝑉𝐺𝑗 + 𝑎𝑏𝑠(𝑆𝐾𝐸𝑗) 

• SKEy: 𝑝𝑗 = 𝐴𝑉𝐺𝑗 + 𝑆𝑇𝐷𝑗 

The presented job priorities were used to analyze the effect of input sequece on the results of the N-NEH+ 

algorithm. The measure of solution quality for a given benchmark is the average relative percentage deviation 

(ARPD) calculated as: 

𝐴𝑅𝑃𝐷𝑆𝑃 =
1

𝐼
∑

𝑀𝑆𝑃,𝑖𝑐−𝑀𝑏𝑒𝑠𝑡,𝑖𝑐

𝑀𝑏𝑒𝑠𝑡,𝑖𝑐

𝐼
𝑖𝑐=1               (1) 

where SP is the sorting priority, I indicates the number of instances in the benchmark, MSP,ic is the makespan 

value of the sorting priority SP for instance ic and Mbest,ic is the best known value of makespan for instance ic. 
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3. COMPUTATIONAL EXPERIMENTS 

The N-NEH+ algorithm performance with the presented sorting priorities were tested using two benchmarks: 

Taillard’s benchmark with 120 instances [14], and VRF benchmark with 240 Small (S) and 240 Large (L) [15]. 

The algorithm was implemented in C# and all the computations were carried out on a computer with two Intel 

Xeon E5-2660 v4 CPUs. 

Tables 1-3 show the results of the N-NEH+ algorithm for different N-list lengths for instances, respectively: 

Taillard (Table 1), VRF Small (Table 2), and VRF Large (Table 3). 

Table 1 ARPD[%] values for TAILLARD’S benchmark (the best ARPD value for a given N is bolded).  

Sorting priority N 

1 2 4 8 16 

TPT 3,326 2,947 2,552 2,317 2,195 

TPT1 3,947 3,490 2,989 2,606 2,319 

TPT2 3,602 3,130 2,769 2,485 2,258 

TPT3 3,464 3,086 2,625 2,364 2,243 

S 3,279 2,952 2,642 2,314 2,184 

SR 3,462 3,028 2,696 2,414 2,246 

SP 3,882 3,345 2,920 2,540 2,284 

WSUM 3,633 3,120 2,732 2,386 2,217 

ABS_DIF 3,724 3,349 3,011 2,713 2,569 

WABS_DIF 4,008 3,436 3,000 2,748 2,512 

SS_SRA 3,752 3,336 3,041 2,726 2,532 

SS_WSRA 3,808 3,275 2,936 2,692 2,506 

SS_SRS 3,777 3,334 3,003 2,701 2,528 

SKE 3,282 2,886 2,589 2,353 2,181 

SKEx 3,201 2,968 2,597 2,309 2,189 

SKEy 3,273 2,919 2,644 2,408 2,204 

For the Taillard benchmark, three sorting priorities stand out: TPT, SKE, and SKEx. For the NEH algorithm 

(N=1), the best priority was found to be SKEx, which is clearly outperformed by the others. The original sorting 

priority of the NEH algorithm was found to be the best for only one analyzed N-list length (N=4). 

Table 2 ARPD[%] values for VRF Small benchmark (the best ARPD value for a given N is bolded).  

Sorting priority 
N 

1 2 4 8 16 

TPT 3,845 3,325 2,951 2,641 2,473 

TPT1 4,231 3,718 3,199 2,870 2,653 

TPT2 4,041 3,510 3,111 2,740 2,566 

TPT3 3,919 3,469 3,067 2,781 2,604 

S 3,923 3,436 2,971 2,657 2,496 

SR 3,955 3,541 3,063 2,763 2,548 

SP 4,108 3,548 3,108 2,803 2,594 
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WSUM 4,076 3,521 3,106 2,765 2,571 

ABS_DIF 4,299 3,799 3,389 3,161 2,947 

WABS_DIF 4,400 3,825 3,456 3,171 2,976 

SS_SRA 4,294 3,853 3,374 3,141 2,951 

SS_WSRA 4,329 3,876 3,471 3,196 3,025 

SS_SRS 4,291 3,797 3,455 3,193 3,024 

SKE 3,842 3,356 2,886 2,622 2,448 

SKEx 3,835 3,360 2,937 2,655 2,493 

SKEy 3,880 3,395 2,938 2,669 2,487 

For the VRF Small instance, the distinguished sorting priorities again turned out to be: TPT, SKE and SKEx. 

Again, the SKEx priority was the best for the NEH algorithm. Among the priorities, the SKE priority stands out, 

producing the best results for three of the five N-list lengths tested. 

Table 3 ARPD[%] values for VRF Large benchmark (the best ARPD value for a given N is bolded).  

Sorting priority 
N 

1 2 4 8 16 

TPT 3,332 3,003 2,673 2,390 2,142 

TPT1 3,470 3,140 2,830 2,525 2,287 

TPT2 3,426 3,082 2,764 2,460 2,210 

TPT3 3,368 3,034 2,736 2,424 2,202 

S 3,288 3,000 2,689 2,368 2,127 

SR 3,380 3,061 2,773 2,466 2,232 

SP 3,795 3,457 3,081 2,782 2,493 

WSUM 3,501 3,193 2,874 2,599 2,335 

ABS_DIF 3,446 3,185 2,890 2,629 2,407 

WABS_DIF 3,436 3,168 2,895 2,669 2,429 

SS_SRA 3,384 3,132 2,851 2,606 2,388 

SS_WSRA 3,448 3,184 2,900 2,649 2,427 

SS_SRS 3,416 3,143 2,848 2,618 2,386 

SKE 3,362 3,013 2,634 2,378 2,122 

SKEx 3,313 3,016 2,669 2,375 2,156 

SKEy 3,348 3,008 2,671 2,372 2,132 

For the VRF Large instance, the most effective priorities were: S and SKE. For none of the N-lists was the TPT 

priority the best. Only for the VRF Large instance, the S priority achieved the best result among all priorities. 

Moreover, priority S turned out to be the most effective sorting priority for as many as three of the five analyzed 

N-list lengths. 

The last aspect that was analyzed is the difference between the best and the worst result of all the sorting 

methods used. This value was referred to as “Difference” in the following section and was calculated as follows: 

Difference = Max − Min              (2) 

Table 4 summarizes the Min, Max, and Difference scores for each benchmark and N-list length analyzed. 
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Table 4 Summary of Min, Max and Difference (max-min) ARPD values for the analyzed sorting priority 

Bench. Value 
N 

1 2 4 8 16 

Tai. 

Min 3,201 2,886 2,552 2,309 2,181 

Max 4,008 3,49 3,041 2,748 2,569 

Dif. 0,807 0,604 0,489 0,439 0,388 

VRF S 

Min 3,835 3,325 2,886 2,622 2,448 

Max 4,4 3,876 3,471 3,196 3,025 

Dif. 0,565 0,551 0,585 0,574 0,577 

VRF L 

Min 3,288 3 2,634 2,368 2,122 

Max 3,795 3,457 3,081 2,782 2,493 

Dif. 0,507 0,457 0,447 0,414 0,371 

For both the Taillard and VRF Large instances, it is clear that the Difference value decreases as the N-list 

length increases. Only for VRF Small instance, the Difference value remains at a similar level. For all instances, 

however, can be seen a clear decrease in the value of Min and Max. It means that regardless of the input 

sequence, the N-NEH+ algorithm allows for a clear improvement in the performance of the NEH algorithm. In 

addition, the value of Difference allows us to conclude that for most instances, it will reduce the discrepancy 

of results obtained by the N-NEH+ algorithm for different input-sequences. 

4. CONCLUSION 

In this study, the problem of the influence of input sequence on the results obtained using the N-NEH+ 

algorithm was analyzed. For calculations 16 sorting priorities were used. Analyses were performed using 

Taillard's and VRF benchmarks. Different lengths of the N-list were also considered in the analyses. The 

obtained results confirm that similarly to the NEH algorithm, also for the N-NEH+ algorithm the input sequence 

is very important for the efficiency of the algorithm. For each of the analyzed sorting priorities N-NEH+ allowed 

a significant improvement of the result, relative to the NEH algorithm. Both for Taillard's benchmark and VRF 

Large, as the length of N-list increases, we can observe a decreasing difference between the best and worst 

results of analyzed sorting priorities. Only in the case of VRF Small instance this difference remains at a similar 

level. It is also worth noting that for analyzed benchmarks, different sorting priorities allowed to obtain the best 

results for the NEH algorithm, but in no case was the original sorting priority of the NEH algorithm - i.e. TPT. 
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