£ Dec 3™ - 5™ 2018, Prague, Czech Republic, EU

A PROLOG-BASED MODEL FOR TASKS MANAGEMENT IN PROJECTS
Tomasz PRIMKE

Silesian University of Technology, Gliwice, Poland, EU, Tomasz.Primke@polsl.pl

Abstract

Although programming in logic (LP) never became mainstream paradigm, it is still used and researched. The
most known LP language is Prolog. Several implementations of Prolog are available, both free and
commercial. Therefore, it can be used in both small companies, as well as in larger corporations. One of many
applications of Prolog can be tasks management in projects. The paper presents a formal model of tasks
management, as a scheduling problem. In the model, tasks, precedence constraints, estimated duration times
and available resources (employees) are taken into consideration. Corresponding program scheme in the
Prolog language is also presented. Although the model is simplified, it can be easily extended to cover more
complex cases. The model is then used to solve example problems. To prove its correctness, a simple example
is used, with two different teams of employees. One team is composed of dedicated employees, and another
one of employees able to perform any task. To test limitations of the model, mainly in terms of computation
time, examples with larger number of tasks are used. The results show that Prolog is a reliable tool for such
type of problems, especially for teams of dedicated employees.

Keywords: Prolog, project management

1. INTRODUCTION

In the modern IT industry, most jobs are done in a form of projects. Dedicated applications design and creation,
adaptations and implementations of complex systems are all examples of one-time undertakings, which can
result in either success, or failure. The costs of projects are usually significant, so it is reasonable to look for
proper management methods, which minimize the risk of failure [1].

In small companies, most projects are implemented in stages. Each stage is implemented independently of
other stages, so it can be considered to be a distinct project itself. As the result, the number of tasks at each
stage is lower, than the total number of tasks in whole project. For this reason, management methods may be
used for lower number of tasks, and often the optimal solutions can be searched.

The first implementation of Prolog was created in 1972. Although programming in logic, which is the main
paradigm in Prolog, has never become so mainstream, as other paradigms, the ideas are still being
researched, and various Prolog implementations are actively developed. Prolog is used to develop expert
systems, automatic planning and logic data analysis [2]. Since many modern Prolog implementations are free,
even for commercial use, it can be applied to solve optimization problems, e.g. in small companies. For the
backtracking algorithm, which is used to search solutions in Prolog, it is well suited to implement methods
based on the branch and bound one.

In this paper, a project management problem is presented as a scheduling problem. It is similar to the well-
known parallel machines scheduling problem [3], with additional precedence constraints between tasks [4].
The difference is made by the additional constraints, which prevent scheduling tasks on any resource
(employee). The resource-constrained project scheduling problem (RCPSP) is also very similar, and the
difference is in resources usage: in the problem, described in this paper, a task can be assigned to any
employee (provided, that the employee is able to perform the task), and only one employee is needed. The
problem can be presented as a multi-mode resource-constrained project scheduling problem (MRCPSP) [5].

337



¢

£ Dec 3™ - 5™ 2018, Prague, Czech Republic, EU

MRCPSP is more general, though, since in the problem described in this paper, the only considered resources
are employees. All the mentioned problems are NP-hard.

In the third chapter, description of the Prolog model, used to solve the problem, is presented. In literature,
much more popular models are based on constraints programming [6-7]. The results of research are presented
in the fourth chapter.

2, PROBLEM

Each project can be described as a set of tasks T. For each task i, processing time p; is specified. Tasks are
meant to be performed by employees, denoted as r. Each employee has some skills. The skills are required
to perform tasks, so for each task /, a set of skills could be defined. Skills of each employee are usually known,
and employees with specified skills are searched for jobs. It was observed, though, that during assignment of
employees to tasks, skills are rarely used in direct form. Team leaders, and small companies CEOs, are usually
aware, which employee can perform which tasks in a project. For this reason, it is easier to model skills in the
form of sets T, which consist of all the tasks /i, which the employee r can be assigned to in the project.

Tasks in any project can be presented in a form of a directed graph. An exemplary graph is presented in Figure
1. The mentioned processing times p; are given in parentheses.

Figure 1 Exemplary project

A scheduled task can be represented as a tuple (i, s;, ¢, ), where i is the task number (identifier), s;and c; are
the task's start and completion times, and r is the employee assigned to the task. A complete, feasible schedule
can be represented as a set of such tuples, which meet the following conditions: (a) for each task i, one and
only one tuple is given, (b) for each task i, ¢i = s; + p;, (c) the task i should belong to the set T, for the given r,
(d) each employee r, at any moment of time, can be assigned to at most one task.

Having defined schedule, the maximal c; is denoted as Cnax, the makespan. The optimization problem is to
find a feasible schedule with the minimal makespan value. Such performance index is both simple to calculate,
and economically significant.

3. PROLOG MODEL

The model, proposed in this paper, follows the logic programming paradigm (the standard one for all Prolog
implementations). The base predicate is used to schedule a single task. First of all, a set of all tasks, which
can be scheduled, is constructed. The set is based on precedence constraints, and on the current, partial

338



¢

£ Dec 3™ - 5™ 2018, Prague, Czech Republic, EU

schedule. Then, a single task is chosen from the set. Having a task to schedule, the earliest possible beginning
of the task is calculated. This moment is determined by two factors: by the completion times of all the tasks
predecessors, and by the availability of an employee, that the task can be assigned to.

In Prolog, a program (model) is composed of predicates. The Prolog search algorithm tries to find all the
possible solutions, for each executed pradicate. Whenever a predicate is executed, there are three
possibilities: (1) the predicate cannot be proved, (2) the predicate is true for a single set of its arguments, (3)
there are many different sets of arguments, for which the predicate is true. In the third case, so called choice
point is created, and the remaining predicates are executed. In the first case, the program execution is got
back to the last choice point, where another solution is tried.

In the described scheduling procedure, two different choice points may be introduced. The first point is created,
when there are more tasks, which can be scheduled. The second point is created, when there are more
employees, which can be assigned to the chosen task, at the calculated start moment.

The scheduling procedure could be performed, as long as there are tasks, which can be scheduled. For the
optimization purposes, though, the makespan was checked after each scheduled task. Whenever the Cpax
value was greater, than the assumed, maximal one, the scheduling process was broken, and Prolog
backtraking algorithm got back to the last choice point.

Based on the analysis of results (presented in the next chapter), a slight modification of the proposed model
was introduced. After a task is scheduled, all the unscheduled tasks are known. The employees, which can be
assigned to those tasks, are also known. For each employee r, the C, time can be calculated, which is the
time, when all the tasks assigned to the employee are completed. Knowing all the tasks to be scheduled, their
processing times can be added to the calculated C,times, with respect to the T, sets. When such an estimation
of makespan is greater, than the assumed, maximal value, there is no point in continuation of scheduling tasks,
and backtracking may be used to get back to the last choice point, in order to look for another solution.

The proposed makespan estimation is rather smaller, than the actual makespan. The reason is simple: no
precedence constraints between tasks are considered while calculating the estimated C, times. The constraints
may cause delays in tasks executions, since some tasks cannot be started before their preceding tasks are
completed. For this reason, the proposed makespan estimation is not perfect, although it allows to detect
schedules of worse quality faster.

In Prolog, the solution space is searched with the backtracking algorithm. Unless the search is broken, the
whole search space is checked. Since the problem is NP-hard, searching may take long time to complete. The
complete schedule can be represented by a set of tuples (i, s;, ¢;, r). The schedule is constructed by scheduling
tasks, one at time. The start and completion times do not affect the choice points, so they also do not affect
the size of the solution space. The space can be presented as an ordered set of tuples (i, r), where each tuple
corresponds to a different task. The number of all different, ordered sets of tuples (i, r), which can be
constructed for a problem, is the size of solution space (denoted as SSSize).

4, COMPUTATION RESULTS AND FURTHER ANALYSIS

Using the project, presented in the Figure 1, and the model, described in the third chapter, the research was
conducted. Two different teams of employees were considered (the details are presented in the Table 1). The
employees in the first team were specialized, so some tasks could be performed by only one of them, with few
exceptions. The second team consisted of “universal” employees, which were able to perform any task. The
second team was considered only for comparison purposes, since in most projects (especially in IT industry),
employees are highly specialized, and cannot be assigned to any task. The purpose of the second team was
to test the scheduling model: having such a “universal” team of employees should lead to obtain a better
schedule.

339



Dec 3™ - 5™ 2018, Prague, Czech Republic, EU

Table 1 Possible assignments of employees to tasks

Team Employee 1 Employee 2
Specialized 1,2,3,4,5,6,8,10,13 4,6,7,9,10,11,12,13, 14
Universal 1-14 1-14

For the research, SWI-Prolog was used. All computations were performed on a PC, running under the Ubuntu
14.04 LTS operating system, with 8GB RAM. The obtained results are presented in the Table 2.

As expected, the makespan for the “universal” team of employees is better. The detailed analysis of the
obtained schedules proved, that the solutions were correct. Since the Prolog model was executed up to the
point, where no other solutions could be found, the obtained solution was proven to be the optimal one. Using
the model, it is possible to find all the optimal solutions.

Table 2 Obtained results

Team Cmax Time Time b. est.
Specialized 155 5s 3.8s
Universal 147 45s 45s

The “Time” column, in the Table 2, shows the computation time needed to find the optimal solution. It should
be noted, that in the case of “universal”’ team, the time is significantly longer. The obvious explanation is the
fact, that there are much less constraints on the employees assignments to the tasks, so the search space is
much larger. The optimal solution was found relatively fast, but the other solutions also had to be examined,
in order to prove, that no better solution could be found. The most computation time was spent on those proving
search activities.

Finally, the column “Time b. est.”, shows the computation time needed to find the optimal solution, in the case
of model with better makespan estimation. Although the estimation was not perfect, it allowed to search the
whole solution space faster. What can be noted, the better estimation was not helpful at all, in case of the
“universal” employees team.

Table 3 Computation times and problem difficulty estimations

Problem Comp. time SSSize STC
1 38s 126,720 79,621
2 9.2s 190,080 201,046
3 75s 95,040 166,159
4 18s 44,352 41,714

Practical usage of any scheduling method requires some estimation of computation time. For a single team,
computation time of seconds per project is not a problem. Having in mind the fact, that the problem is NP-hard,
though, the time may become much longer with the larger number of tasks, or with other precedence
constraints between them. For this reason, many example problems were examined. In each case, the
computation time was measured. Some results are presented in the Table 3.

It can be noted, that the problems, presented in the Table 3, were of different difficulty levels, since the
computation times (column “Comp. time”) are different. In the column denoted “SSSize”, the search space size
is presented. As it was described in the chapter 3, the Prolog model was based on idea of a single task
scheduling. Such procedure was repeated, until a complete solution was obtained, or until it was clear, that no

340



¢

£ Dec 3™ - 5™ 2018, Prague, Czech Republic, EU

better solution could be obtained from the current, partial schedule. In the column “STC”, the number of this
procedure calls is presented.

Comparing computation times for the presented problems, it can be noted, that the most time demanding was
the second one, than, the third one, and for the first one (presented in the Figure 1), the optimal solution was
obtained relatively fast. Those results contrast with the search space size, which is the highest for the second
problem, but the first problem has greater search space, than the third one. On the other side, the counted
executions of the single task scheduling procedure correspond to the computation times. It means that the
STC value is a better estimation of the problem difficulty level. Unfortunately, this estimation cannot be
calculated in advance, in contrast to the search space size.

After the described research, examples with greater numbers of tasks were examined. For the limited space
of this paper, the examples are not presented. It is very easy to create such examples, though. The obtained
computation times were in the range of a few seconds, to a few minutes. It is worth to notice, that in most
cases the optimal solution was obtained relatively fast. The vast computation time was needed only to prove,
that no better solution exists. Sometimes, such proof is not needed.

In some cases, a small modification of the precedence graph led to much longer computation times. Such
situation was observed for both smaller and larger examples. Since the most precise method of time
estimation, presented in this paper, requires actual computation, such examples cannot be detected before
the model is used. The only presented estimation, which does not require computations, is the size of solution
space, and can be deceptive.

5. CONCLUSION

Although Prolog has never become a mainstream programming language, it seems to be a reliable tool for
solving the type of problems described in this paper. The considered projects, observed in small IT companies,
are divided into stages of 10-30 tasks per stage. For such examples, the model presented in this paper, was
able to find optimal solutions within times of range from a few seconds, to a few minutes. Such computation
times are acceptable in many real-life cases.

It should be also noted, that in case of projects consisting of much larger number of tasks, the presented model
may be used to find a good solution, and the proof that no better solution exist may be not completed, due to
long computation time. The considered problem type is NP-hard, and no easy way to estimate the needed
computation time to complete the model is known. In such cases, the problem may be divided into smaller
ones, with lower number of tasks.

The computation time of a few seconds, may be acceptable. The time of a few minutes also may be acceptable,
and since the problem is NP-hard, the computation times may become much larger. The research proved, that
sometimes a small change in the precedence graph topology may affect the computation time significantly.
For this reason, a good computation time estimation method is needed, before the model can be used to solve
real-life problems.

ACKNOWLEDGEMENTS
This paper was funded by BK-204/RAu1/2017 (topic 9).

REFERENCES
[1] RUBIN, Kenneth S. Essential Scrum. A Practical Guide to the Most Popular Agile Processes. Addison-Wesley.
2012.

[2] NIEDERLINSKI, Antoni. A Gentle Guide to Constraint Logic Programming via ECLiPSe. Jacek Skalmierski
Computer Studio, Gliwice, 2014.

341



£ Dec 3™ - 5™ 2018, Prague, Czech Republic, EU

[3] PINEDO, Michael L. Scheduling: Theory, Algorithms, and Systems. Springer, London. 2016.

[4] GACIAS, Bernat, ARTIGUES, Christian, LOPEZ, Pierre. Parallel Machine Scheduling with Precedence
Constraints and Setup Times. Computers & Operations Research. 2010. no. 37, pp. 2141-2151.

[5] SCHWINT, Christoph, ZIMMERMAN, Jurgen. Handbook on Project Management and Scheduling Vol. 1.
Springer. 2015, p. 663.

[6] TROJET, Mariem, H'MIDA, Fehmi, LOPEZ, Pierre. Project Scheduling Under Resource Constraints: Application
of the Cumulative Global Constraint. Industrial Engineering. 2009.

[71 KRETER, Stefan, SCHUTT, Andreas, STUCKEY, Peter J. Using Constraint Programming for Solving
RCPSP/max-cal. Constraints. 2017. Vol. 22. pp. 432-462.

342



