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Abstract

The combination of decisions regarding inventory management and vehicle routing decision leads to complex
combinatorial optimization problem called the Inventory Routing Problem (IRP). Several heuristic algorithms
for solving IRP were proposed in recent years. A lot of them are based on static and deterministic versions of
IRP. Based on our management experience we identified a lot of situations where the VMI approach is used
but the dynamic version of the IRP has to be considered. Such situations occur in case of LPG supplies to fuel
stations. There are some proposals of heuristic policies which can be used in above mentioned circumstances.
In our proposal after each delivery the optimization models are applied in order to optimize routes and delivery
dates. In our paper we presented the combined use of optimization models and discrete event simulation to
evaluate the influence of different variability of selected models’ parameters on the final plan. Simulation
models have proved very useful as an aid to build dynamic and robust plans for considered inventory routing
problem. We presented results of extensive simulation analysis of randomly generated cases for comparison
our proposals and some policy solutions.
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1. INTRODUCTION

The fuel stations supply problem belongs to the major transportation and logistics problems with very strong
economic impact. Autogas deliveries to fuel stations is a particular case of this problem. As a repetitive
distribution of a homogenous product by a homogenous fleet of tank trucks it can a priori be considered
as a very good research area for IRP solutions. Deliveries of petrochemical products to the fuel stations in most
European countries are performed by highly specialized hauliers under centralized planning and scheduling
conditions. The successful implementation of VMI (Vendor Managed Inventory) strategy can lead to high
productivity results, high customer service level and efficient organization. One of the key factors for this
approach is the adequate DSS (Decision Support System) for deliveries planning and scheduling. This paper
focus on some logistic aspects of this complex and important problem basing on real-life data from the
transportation company and develops some specific methods in order to increase the competitiveness of
transportation operations.

The research method presented is an attempt to use time-discretized integer programming models to solve
a real life IRP. The proposed formulation is based on location based heuristics (LBH) introduced by Bramel
and Simchi-Levi [1]. In comparison to the primary formulation in this approach more than one item was
considered. Additionally, based on empirical observations the seed sets technique was simplified
and the decision model was slightly changed. The considered algorithm was also implemented by Hanczar [2]
to solve the fuel distribution problem.
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Until recently, optimization and simulation were kept pretty much separate in practice, even though there was
a large body of research literature relevant to combining them. In the last two decades, however, optimization
routines have prominently worked their way into and with simulation packages (Fu [3]). The combined use of
optimizing methods of mathematical models (MIP) with discrete event simulation models can contribute to the
formation of more accurate and more robust plans. Developed simulation models will allow to study of the
impact of demand variability on distribution results.

2, SCOPE OF RESEARCH

The specificity of the transport services market of petroleum products and autogas in Poland indicates
the possibility of the use of decision support models (in particular IRP approach) for delivery planning.
The main key factors are (1) product homogeneity (in case of autogas / LPG we're dealing in fact with only
one product, in the case of fuels with a maximum of 6 products); (2) existing infrastructure including telemetry
systems that provide information about the inventory level of gas and fuels at service stations several times a
day; (3) increasing frequency of application of Haulier Managed Inventory (HMI) approach by fuel suppliers,
according to which the transport company is responsible for ensuring the availability of fuel at the station. On
the other hand, important variations of daily demand on fuel stations is a significant factor to be considered for
application of IRP models. In vast majority of theoretical papers concerning IRP, demand is considered
deterministic even within the whole planning horizon.

The authors of the present study decided to implement the following research tasks. It was assessed in the first
step how advantages of IRP application for fuel distribution can be affected in real life by fuel stations demand
variability. In the first stage it was verified whether the variability of real data of consumption allows the use of
IRP at all. In the second stage it was verified for which patterns of demand variability IRP models can be
applied and the length of the planning horizon was determined.

Implementation of the second stage was related to proposal of a method of solving the present problem of fuel
supplies that would be robust against high demand variability. Although the literature on the subject begin to
provide some proposals concerning these issues, they are based in most cases on the use of simple supply
rules heuristics or forecasts application. Unfortunately, none of these approaches apply for the case of Polish
LPG deliveries market where consumption variability arrive to 40% or even more. The proposal provided by
the authors of this paper, which in such conditions can significantly improve the performance of algorithms
used, consists in launching the route optimization executed after each delivery. Combined use of the
optimization approach (for IRP solutions) and simulation approach (to verify the effects of planning
in stochastic conditions) allowed to point out the advantages of such an approach.

3. LITERATURE REVIEW

The paper by Beltrami and Bodin [4] may be deemed a pioneering work regarding IRP problems. This work
focused on modeling and simple solution techniques. In the following papers by Fisher et al. [5] and Bell et al.
[6] mixed integer programming was used first to obtain a solution for the IRP instance. Subsequently, the first
approach to solve a large IRP instance was made by Golden et. al. [7] and by Dror [8], they investigated the
large distribution system of liquid propane to residential and industrial customers. Burns et al. [9] try an analytic
approach to solving IRP. They considered the optimal trade-off between inventory and transportation costs.
The two distribution strategies are taken into account: direct shipping (i.e. shipping separate loads to each
customer) and peddling (i.e., dispatching trucks that deliver items to more than one customer per load). The
presented results indicate that the cost trade-off in each strategy depends on shipment size. For direct
shipping, the optimal shipment size is given by the economic order quantity (EOQ) model, while for peddling;
the optimal shipment size is a full truck. In the latter case, trade-off also depends on the number of customers
included on a peddling route.

106



cLC 20167 Nov 28 - 30t 2016, Poland, EU

Parallel to the deterministic IRP the large area of research where the stochastic version of the IRP is
considered. This field started with papers by Dror and Trudeau [10] and Dror Laporte and Trudeau [11], where
authors consider the VRP with stochastic demand. However, due to the fact that in this paper stochastic
formulation is not considered, a more detailed review of the paper has been omitted. A complete review of
methods and algorithms for solving stochastic IRP problems may be found in Schwarz et al. [12] or Cordeau
et al. [13]. Conerning simulation and optimization combined approach, one of the recent reviews that can be
considered is Figueira and Aimada-Lobo [14].

4. METHODOLOGY OF COMBINING SIMULATION AND OPTIMIZATION MODELS
FOR THE ROUTES AND DELIVERY DATES

In our approach we consider combined use of simulation and optimization models for robust solving
of inventory routing problem of LPG deliveries to petrol stations within one region in Poland (one depot, multiple
vehicles, several dozen customers). Starting from the optimisation model in order to determine an optimal or
suboptimal MIIRP solution of the problem, our approach proceeds with application of discrete event simulation
tool (DES), which is able to provide information about whole system behavior and its reactions to LPG demand
variations at petrol stations (see Figure 1). The solution generated by optimization model is used as input for
simulation model to verify the feasibility and robustness of the computed solution through the generation of
different scenarios which consider different levels of demand variability typical to real life systems.

The results of the simulation experiments, allowing an evaluation of the system performance, can support the
detection of the current solution weaknesses and limitations of the initial problem MIIRP solution. The feedback
loop is then realised going back to the optimisation phase with the new information generated by the simulation
model. This information is used to improve the initial optimal or suboptimal solution. This approach allows to
evaluate the relevant system performance in case of different levels of demand variations and indicate weather
re-planning during the day is necessary and possible.

Data Collection and Input
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Robust Solution

Figure 1 Overview schema of simulation-optimization integrated approach

In order to describe the demand variability at the stations we apply coefficient of variation (CV) which is defined
as the ratio of the standard deviation o to the mean u:

cr== (1)

y7i
It shows the extent of variability in relation to the mean of the population. In our model each node shall
represent each petrol station with specific coefficient of variation CVi (i = 1, ..., n). Final demands at the petrol
stations are assumed to be random variables (stochastic in nature) and no assumption is made about
the inventory policy at an individual station. The inventory position of each station shall be analyzed and joint
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inventory and routing decisions shall be made to avoid any stock-outs and minimize the total expected cost of
transportation in each scenario (which is considered as linear function of total travelling distances).
The inventory cost of LPG at stations shall be neglected as the cost of LPG is rather low (comparing
e.g. to other liquid fuels) and usually stations' vessels capacities are relatively low.

5. NUMERICAL EXPERIMENTS

For the computational experiments real data has been taken into consideration. In our approach we first
performed VRP computations applying optimization model for the 15t day, than we performed stochastic
demand simulation for the 15t day, then we performed VRP computations for the 2" day again and stochastic
demand simulation for the 2" day and again the same sequence for the 3™ day (see Figure 2).

Data Collection and Input
VRP Optimisation for 1st Day VRP Optimisation for 2nd Day VRP Optimisation for 3rd Day
¢ A y
Demad Simulation for 1st Day Demad Simulation for 2nd Day Demad Simulation for 3rd Day

'Rolling VRP' Solution

Figure 2 Overview schema of 'Rolling VRP' simulation-optimization integrated approach

In the second step we performed IRP computations applying optimization model for the first 3 days,
than we performed stochastic demand simulation for the 15t day, then we performed IRP computations for the
days 2-3-4 and stochastic demand simulation for the 2" day and again we performed IRP computations for
the days 3-4-5 and stochastic demand simulation for the 3™ day (see Figure 3).

Data Collection and Input
IRP Optimisation for Days: 1-2-3 IRP Optimisation for Days: 2-3-4 IRP Optimisation for Days: 3-4-5
Demad Simulation for 1st Day Demad Simulation for 2nd Day Demad Simulation for 3rd Day

'Rolling IRP' Solution

Figure 3 Overview schema of 'Rolling IRP' simulation-optimization integrated approach

Our computations were performed on real-life data of LPG distribution within one region in Poland for a given
gas supplier. The region consists of one depot and 36 gas stations 24/7 open. Traditionally the customer uses
from 2 to 3 truck to organize deliveries to the stations during 7 days per week and considers cost efficiency
(number of kilometers per 1000 L delivered) as key point.

All computations were performed according to the following data:
° number of customers n: 36;
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° number of depots: 1;

° planning horizon: 3 periods;

° demand distributions: mean demand is generated as an integer random number following a discrete
triangular distribution with lower limit 10% and upper limit 85%;

° product availability at the depot: always;

° maximum inventory level: 85% due to LPG distribution specific limitations;

° starting inventory level: randomly generated;

° vehicle capacity: 36000 I.

The key performance indicators (KPI's) of our model are:
° number of kilometers per 1000 L of LPG delivered - a [km / 1000 1]
o number of stock-outs occurred at any station within the distribution period - .

Our aim is to minimize number of kilometers per 1000 L of LPG delivered and avoid any stock-out
at any station. Simultaneously we control the aggregated volume of LPG in whole distribution network
of stations: we compare the total daily sales of all stations with the volume of gas delivered to the stations
within one day. Our aim is to avoid situation when the aggregated volume of LPG in whole distribution network
would drop below a certain critical level which shall oblige to use much higher number of trucks and drivers to
prevent the supply chain from general inefficiency. For our computations we first consider small number of
trucks (2) to perform the deliveries to all stations. However shall the number of trucks used be insufficient (an
integer solution to optimize not existing), we increase number of trucks (e.g. to 3) to run our optimization. For
each of data sets we have generated simultaneous computational experiments of joint usage of proposed
optimization and simulation models. We first provide results for combined use of simulation and VRP
optimization models for planning horizon of three days. For different coefficient of variation levels we present
number of stock-outs, solution of costs / travelled distance and number of vehicles used to perform deliveries.

Table 1 Results of optimization / simulation experiments for planning horizon k=1 for three days (VRP variant)

Day Day Day Day
1121]3 1 2 3 1 2 3 112183
CV | stock-outs Sum Distance Sum Liters of LPG delivered Sum No. of routes | a [ km /

[%] 7] travelled [km] / vehicles 1000 L]

5 0|00 0 |326|1025|1520| 2871 | 34997 | 68400 | 100807 | 204204 11213 14.1

10101010 0 |326|1025| 1134 | 2485 | 34997 | 68400 | 70556 173953 11212 14.3

15 101010 0 |326|1025|1040| 2391 | 34997 | 72000 | 68400 175397 11212 13.6

20 /0|00 0 |326|1025|1415| 2766 | 34997 | 72000 | 68400 175397 11212 15.8

25 |01 0|0 0 |326|1025|1552| 2903 | 34997 | 70997 | 72000 177994 11212 16.3

30 /01070 0 |326|1025| 1157 | 2508 | 34997 | 72000 | 70556 177553 11212 14.1

35 | 1101 2 |326| 999 | 1564 | 2889 | 34997 | 68400 | 72000 175397 11212 16.5

40 | 11111 3 |326| 997 | 1071 | 2394 | 34997 | 70556 | 72000 177553 11212 13.5

45 |1 1] 1 3 |326| 968 | 1609 | 2903 | 34997 | 68400 | 72000 175397 11212 16.6

50 | 2|11 4 1326| 928 | 1125 | 2379 | 34997 | 72000 | 68400 175397 11212 13.6
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Some conclusions can be drawn from Table 1. For coefficient of variation values below 30% we do not observe
any stock-outs and number of stock-outs grows for higher values of CV.

In Table 2 we provide results for combined use of simulation and IRP optimization models for planning horizon
of three days. For different coefficient of variation levels we present number of stock-outs, solution of costs /
travelled distance and number of vehicles used to perform deliveries.

Table 2 Results of optimization / simulation experiments for planning horizon k=1 for three days
(IRP with rolling horizon variant)

Day Day Day Day
11213 1 2 3 1 2 3 1123
CV | stock-outs Distance : . No. of routes | a [ km /
[%] v Sum travelled [km] Sum Liters of LPG delivered Sum / vehicles | 1000 L]

5 10]0]0 0 79310871179 | 3059 | 68400 | 68400 | 72000 | 208800 | 2 | 2 | 2 14.7

10 000 0 79311095 | 1177 | 3065 | 68400 | 68400 | 70556 | 207356 | 2 | 2 | 2 14.8

15000 0 79313321451 | 3576 | 68400 | 72000 | 97200 | 237600 | 2 | 2 | 3 15.1

20 0] 0] 0 0 ]793]1095]|1410| 3298 | 68400 | 72000 | 108000 | 248400 | 2 | 2 | 3 13.3

25 | 0]0]0 0 793114321089 | 3314 | 68400 | 104400 | 72000 | 244800 | 2 | 3 | 2 13.5

30 |0 0O 0 179311080 | 1490 | 3363 | 68400 | 72000 | 104400 | 244800 | 2 | 2 | 3 13.7

35 | 0]0 |0 0 [793]1623 | 1060 | 3476 | 68400 | 107434 | 72000 | 247834 | 2 | 3 | 2 14.0

40 |00 |0 0 [793]1452 1163 | 3408 | 68400 | 104400 | 72000 | 244800 | 2 | 3 | 2 13.9

45 1000 0 [793]1456 1044 | 3293 | 68400 | 108000 | 72000 | 248400 | 2 | 3 | 2 13.3

50 |[0]1]0 1 |793| 914 | 1542 | 3249 | 68400 | 72000 | 100800 | 241200 | 2 | 2 | 3 13.5

Some conclusions can be drawn from Table 2. For coefficient of variation values below 45% we do not observe
any stock-outs and number of stock-outs grows for higher values of CV.

6. CONCLUSIONS AND FURTHER RESEARCH DIRECTIONS

We can now evaluate the impact on number of stock-outs and the final solution cost of usage of the two
approaches (i.e. VRP method and IRP with rolling horizon method). Considering results of our computational
experiments we observed important reduction of stock-outs in case of applying IRP with rolling horizon method.
It was caused by additional (non-standard) condition to the model applied which allows high level of trucks
utilization (i.e. 90% of truck capacity to be used). Thus deliveries in case of IRP with rolling horizon method
were performed also to the stations that were not far from the distribution trip and allowed reasonable unloading
in order to avoid any backhaul of LPG to the depot. This practice is common in real-life applications of LPG
deliveries in Poland.

The KPI ratio number of kilometers per 1000 L of LPG delivered is the second element to be considered. In our
computational experiments for 20% level of CV we observed better results for VRP with rolling horizon
approach but for higher values of CV we observed more efficient distribution for IRP with rolling horizon
approach. We can draw conclusion that short planning horizon (only 1 period for VRP method) provides
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positive results only for low values of coefficient of variation. One of the most interesting parameters is number
of trucks used for the distribution. For the VRP with rolling horizon model we needed more than 2 trucks only
in 1 case however for the IRP model it occurred 8 times. In our model we analyzed impact of stochastic
variations of only one parameter: demand. In real-life systems stochastic variations concern many other factors
like:

o service time at the station
° travel time (due to congestion, technical failures, traffic inspections etc.)
° waiting time at depots (queues, product shortage), etc.

For further research our aim is to perform computational experiments of combined use of simulation
and optimization models for simultaneous variations of different distribution parameters.
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