\’oGIST,o

ﬂ

CLC201

v

(,P«RPAT"//q .
a

S

sﬂaaNoo

Nov 4'" - 6% 2015, Czech Republic, EU

THE CONCEPT OF USING HAMILTON CYCLE IN THE DESIGN AND TESTING LOGISTIC
PROCESSES ON THE EXAMPLE OF THE MODULE TENDERS AND TENDERING IN B2B
SYSTEM OPTIBUD

ZUKOWICZ Marek, Lt OBAZIEWICZ Monika

OPTeam S.A., Jasionka, Poland, EU, mzukowicz@opteam.pl; mlobaziewicz@opteam.pl

Abstract

The main purpose of this article is to show how it can be used Hamiltonian graphs and their property in the
software designing and testing. In the article there are described Hamiltonian graphs that are necessary to
understand the content of the research conducted in a frame of R&D project called "The prototype of an
innovative and technologically advanced OPTlbud B2B platform that supports the management of construction
processes through the integration of data and information from multiple sources”, funded by the National
Research and Development Centre under the INNOTECH program, Hi-Tech path. In the article it is shown the
application of the traveling salesman problem in testing. The main problem of using Hamiltonian graphs is
explained on the example of Polish construction companies, which use tenders and tendering at the pre-
investment step and it is shown on the example of using B2B OPTlIbud system. Results of the research show
the advantages of using Hamiltonian cycle in software development and testing.

Keywords: Hamiltonian graphs, Hamiltonian cycle, regression testing, portability tests, software
testing, tendering process.

1. INTRODUCTION

The designing and testing software systems and applications is not obvious and simple task [6], [8]. In practice,
testers very often do not have time to test an application or a system optimally before it enters to a customer
[1]. This problem appears in many IT companies [4]. Thus, it can stay the question: How to design a system
or an application and how to write test cases to perfectly check that all functions of the software work properly?
How to optimize test data portability and many other attributes in the software?

Whereas designing functionalities of software, there are different solutions for implementing the system, the
class module and interfaces for subsequent tests [2], [3]. One of the solutions is using mathematical methods
like the Hamilton graphs theory [11], [13]. It turns out that the using of Hamilton graphs property and their
application in IT systems improves usability and enhances the testing of certain of functional and non-functional
attributes. The method described in the article can be applied at every level of implementation and at each
level of testing the tendering module that is a part of B2B OPTlbud system.

2, HAMILTONIAN GRAPHS

According to F. Harray Hamiltonian cycle is a cycle in the graph where each nodes of the graph is passed only
once (except the first nodes). A Hamilton path (called “The Hamiltonian path”) is the path in the graph that
visits each of its nodes exactly once [7]. Thus, graphs which contain the Hamiltonian cycle are called
Hamiltonian graphs. Hamiltonian graphs considered in the graph theory contain the path which passes through
each node exactly once called the path of Hamilton.

Let G be a graph, V(G) set of its nodes, E(G) set of edges, |A| cardinality, u; one node i of a graph ¢ and
deg(v) the degree of the node (number of edges in it). Notation {v,u} is used to determine the edge
between v and u.

122

\’oGIST,o

(€}

CLC201

V.

(,P«RPAT"//q .
a

S

sﬂaaNoo

Nov 4'" - 6% 2015, Czech Republic, EU

Theorem 1 [12] If the simple graph with n nodes has at least m edges, where:
m=Y%xn—1)*Mn—2)+2 (1)

Theorem 2 [12] Let G be a graph with n nodes and C(G) be the parent graph built to the rule that for every
pair {u, v} not connected with the edge where we have condition

Deg(u) + Deg(v) =n 2)
is added the edge {u, v}. Graph G is Hamiltonian graph if and only if C(G) is Hamiltonian graph.

The idea of first claim is that "graph is Hamiltonian if it has a sufficiently large number of edges". The second
theorem says that if in the inside of the graph find a Hamiltonian cycle and the other nodes and edges will
satisfy the assumptions of Theorem 2, we also expanded graph is a graph Hamilton. However, there are
graphs that do not satisfy the assumptions of any of the above theorems, and contain a cycle or a Hamilton
path.

3. THE TENDERS AND TENDERING MODULE IN B2B OPTIBUD SYSTEM

In B2B OPTlIbud system tenders and tendering module contain functionalities related to the processes for
tenders records and stages of preparation of the tender. It has the ability to automatically downloading
published tenders for public procurement portals with data filtering functionality [10]. An important element of
this module is staging, so it is possible to keep the tracking progress, introducing and analyzing the protocols
of opening tenders, collecting information about the winnings / losses tenders and contractors. At the level of
a creation process it is able to adding estimate / budget to the tendering. The module is linked with the outside
system (Public Tender Bulletin) and it makes to be possible to assume building cards of winning the tender.

9]
4, USING HAMILTONIAN CYCLE IN A DESIGN OF STATUS CHANGES RELATED TO SOFTWARE

FUNCTIONALITIES ON THE EXAMPLE OF B2B OPTIBUD SYSTEM

In many cases the investment process begins from the tendering. According to the tendering process the
functional module in the software must be complied with at least the following conditions [10]:

° The tender is added to the system manually or imported from a web page.

° The tender proceeds to project in preparation.

° The project in preparation proceeds to a submitted project.

° The submitted project can be moved to the project in preparation.

° The submitted project can be rejected, cancelled, lost, but the company can win the submitted project
too and then it becomes in accepted project.

° The accepted project can be rejected or canceled.

° The canceled, lost or rejected project can be moved into project in preparation.

A graph showing the status of tenders/projects in the OPTlbud system is in Figure 1.

|In preparation |<—>| Submitted |<—>| Accepted |
F Y

y A 4

| Rejected | | Lost | | Cancelled |

Fig. 1 Graph showing the status of tenders (1)

123

\’oGIST,o

ﬂ

CLC201

v

(,P«RPAT"/Q .
a

S

sﬂaaNoo

Nov 4'" - 6% 2015, Czech Republic, EU

This graph is not the Hamiltonian graph. It is not against the law to allow rejecting the project in preparation
stage. If one allows such possibility, the graph showing the status of tenders will take the following form (see

Fig. 2).

Iln preparation |<—>| Submitted I<—>| Accepted]
3

Y y

| Rejected | [Lost | | Cancelled |

Fig. 2 Graph showing the status of tenders (2)

Now one should check whether the above graph satisfies the assumptions of theorem 1. A graph is simple.
Since there are six nodes it should contain 12 edges (see Equation 3).

m=-x5%4+2 =12 3)

Taking into account the theorem 1, it can stay that there is in the Hamiltonian cycle. This cycle is the
following sequence of steps:

Lost = In preparation > Rejected > Submitted - Accepted > Cancelled.

Now, supposing that a company operates in such a way that in case of cancellation, rejecting and losing of the
tender wants to be able to close the tender. Closing of the tender means that it is about the information in the
database, but the company will do nothing with this tender for some period of time. After that, however, the
company can open tender and return to the project in preparation. It can for example add closing of the project
from rejected, lost or cancelled project. Then the data flow graph takes the form as in Figure 3.

4-| In preparation I‘—DI Submitted I‘—Dl Accepted I
p

y

| Rejected Lost I I Cancelled J

Fig. 3 Graph showing the status of tenders after adding closing of the tender

It turned out that paths have been added that satisfy the objectives of theorem 2. The extensive graph will
remain Hamiltonian graph too. It can be chosen one Hamiltonian cycle:

Lost = In Preparation > Rejected - Submitted - Accepted - Cancelled - Closed

5. CONCLUSIONS

Designing of systems and applications for the existence of the Hamilton cycles in certain areas or modules
save the time while testing the logistics processes. This remark stems from the fact that the tester must make
fewer movements, if it can perform the Hamiltonian cycle in the tests, especially in manual testing. According
to Bluemke and Kiermasz a lot of testing around the world are performed manually, thus saving time is an
extremely important thing [5]. If the test data flow will be positive, it means that the data transferred properly

124

LOGIST
B O& .
S

e

NeLc 20157 Nov 4t - 6" 2015, Czech Republic, EU

2

v‘gﬁ:‘_{a oNO~

and there is no gap or defect between function pass through states. The reduction in run-time or test design
and reduces the amount of these tests is valued in companies that place a strong emphasis on testing. This
approach is also very beneficial when designing and writing automated tests, because the validation data
transfer is written, one can write once, after passing the Hamilton cycle and thus also shortened the time of
writing these tests (test cases). Theorem 3, which is provided in chapter related to Hamiltonian graphs, can be
used to create new functionality (or some states) to the system or software. It can be created new functions
so that the Hamiltonian path will exist after implemented in software. Then this software will have advantages
such as are described in the preceding paragraph.

ACKNOWLEDGEMENTS

The paper presents the part of R&D project called "The prototype of an innovative and
technologically advanced OPTIbud B2B platform that supports the management of construction
processes through the integration of data and information from multiple sources”, funded by the

National Research and Development Centre under the INNOTECH program, Hi-Tech path.

REFERENCES

[1] ADAMS B., ENGSTROM W., KHOMH F., MANTYLA M. V. PETERSEN K. On rapid releases and software
testing: a case study and a semi-systematic literature review. Empirical Software Engineering, Vol. 20, No. 5,
2015, pp. 1384-1425.

[2] ALSHRAIDEH M., BOTTACI L. Search-based software test data generation for string data using program-specific
search operators. Software Testing, Verification and Reliability, Vol.16, No. 3, 2006, pp. 175-203.

[3] ARCURI A, It really does matter how you normalize the branch distance in search-based software testing.
Software Testing, Verification and Reliability, Vol. 23, No. 2, 2013, pp. 119-147.

[4] BERNER S., WEBER R., KELLER R.K. Observations and lessons learned from automated testing. Proceedings
of the 27th international conference on Software engineering, 2015, pp. 571-579.

[5] BLUEMKE I., KIERMASZ W. Kompozycja i integracja ustug w architekturze SOA, Inzynieria oprogramowania w
procesach integracji systemoéw informatycznych. Gdansk: PWNT, 2011.

[6] HARMAN M, JONES B.F. Search-based software engineering. Information and Software Technology 2001, pp.
833-839.

[71 HARRAY F., Graph theory. Addison - Wesley, 1969.

[8] HUANG C., Performance analysis of software reliability growth models with testing-effort and change-point.
Journal of Systems and Software, Vol. 76, No. 2, 2005, pp. 181-194.

[9] LOBAZIEWICZ M., Standard architektury modelu systemu B2B wspomagajgcego zarzadzanie procesami
budowlanymi. In KOSIUCZENKO P., SMIALEK M., SWACHA J.: Od proceséw do oprogramowania: badania i
praktyka. Wydawnictwo Polskie Towarzystwo Informatyczne, Warszawa 2015, Part 8, pp. 111-120.

[10] OPTEAM S.A. Raport 1 z badan ,Prototyp innowacyjnej i zaawansowanej technologicznie platformy B2B
OPTlIbud, wspomagajgcej zarzgdzanie procesami budowlanymi, poprzez integracje danych i informacji z wielu
zrodet”.

[11] ROMAN A., Testowanie i jako$¢ oprogramowania. Warszawa: Wydawnictwo Polskie Wydawnictwo Naukowe,
2015.

[12] WILSON R., Wprowadzenie do teorii Grafow, Warszawa: Wydawnictwo Polskie Wydawnictwo Naukowe, 2000.

[13] ZUKOWICZ M., Testowanie oprogramowania: Uzasadnienie potrzeby dydaktyki oraz tworzenia strategii
testowania wykorzystujgc wnioski z teorii ,No Free Lunch”. General and Professional Education, Vol. 3, No. 8,
2015, pp. 46-51.

125

